Advertisement

Biotechnology and Bioprocess Engineering

, Volume 24, Issue 3, pp 544–551 | Cite as

A Novel Cold-adapted Endoglucanase (M6A) from Microbacterium kitamiense S12 Isolated from Qinghai-Tibetan Plateau

  • Ling LinEmail author
  • Na Qin
  • Linyan Guan
Research Paper
  • 17 Downloads

Abstract

The gene M6A coding a novel cold-adapt endoglucanase was cloned from Microbacterium kitamiense Sa12 isolated from a wasteland in Saga, Qinghai-Tibetan Plateau. The deduced protein sequence encoded a 411-residue polypeptide sharing similar identities with glycosyl hydrolase family 6 enzymes. The recombinant M6A displayed maximum hydrolysis activity of 1.51 U/mg toward soluble cellulose substrate, CMC at 35°C and pH 5.0, and the Km and Vmax value were 2.12 mg/mL and 15.33 µmol/min*mg, respectively. Interestingly, M6A exhibited significant activity even at ice cold condition, showing 30–40% relative activity at 0–5°C, and had good tolerance to Li+, K+, NH4+, Rb+, Ca2+, Mg2+ Zn2+, Mn2+, and Ni2+, expect divalent cation Cu2+ led to 30% residual activity. These properties might make M6A to be a promising candidate used in the psychrophilic industrial process and/ or the volatile and thermosensitive manufacturing process.

Keywords

endoglucanase Microbacterium kitamiense cold-adapt protein modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This study was supported by grants from the Key Laboratory of Biotic Environment and Ecology Safety in Anhui Province, Innovation Team of Scientific Research Platform in Anhui Universities and Provincial Key Project of Natural Science Research for Colleges and Universities of Anhui Province of China (KJ2017A321).

References

  1. 1.
    Percival Zhang, Y. H., M. E. Himmel, and J. R. Mielenz (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol. Adv. 24: 452–481.CrossRefGoogle Scholar
  2. 2.
    Lynd, L. R., X. Liang, M. J. Biddy, A. Allee, H. Cai, T. Foust, M. E. Himmel, M. S. Laser, M. Wang, and C. E. Wyman (2017) Cellulosic ethanol: status and innovation. Curr. Opin. Biotechnol. 45: 202–211.CrossRefGoogle Scholar
  3. 3.
    Amraini, S. Z., L. P. Ariyani, H. Hermansyah, S. Setyahadi, S. F. Rahman, D.-H. Park, and M. Gozan (2017) Production and characterization of cellulase from E-coli EgRK2 recombinant based oil palm empty fruit bunch. Biotechnol. Bioproc. Eng. 22: 287–295.CrossRefGoogle Scholar
  4. 4.
    Rosa, M. (2017) Psychrophiles: from Biodiversity to Biotechnology. 2nd ed., pp. 461–474. Springer Nature, Springer International Publishing AG, Switzerland.Google Scholar
  5. 5.
    Ueda, M., Y. Konemori, M. Nakazawa, T. Sakamoto, and M. Sakaguchi (2018) Heterologous expression and characterization of a cold-adapted endo-1, 4-beta-glucanase gene from Bellamya chinensis laeta. Process. Biochem. 74: 28–34.CrossRefGoogle Scholar
  6. 6.
    Zeng, X. and D. Xue (2018) Increasing of activity and thermostability of cold active butanol-tolerant endoglucanase from a marine Rhodococcus sp. under high concentrations of butanol condition. 3 Biotech. 8: 265.CrossRefGoogle Scholar
  7. 7.
    Rui, J., J. Li, S. Wang, J. An, W. T. Liu, Q. Lin, Y. Yang, Z. He, and X. Li (2015) Responses of bacterial communities to simulated climate changes in alpine meadow soil of the qinghaitibet plateau. Appl. Environ. Microbiol. 81: 6070–6077.CrossRefGoogle Scholar
  8. 8.
    Venkatachalam, S., V. Gowdaman, and S. R. Prabagaran (2015) Culturable and culture-independent bacterial diversity and the prevalence of cold-adapted enzymes from the Himalayan mountain ranges of India and Nepal. Microb. Ecol. 69: 472–491.CrossRefGoogle Scholar
  9. 9.
    Siddiqui, K. S. and R. Cavicchioli (2006) Cold-adapted enzymes. Annu. Rev Biochem. 75: 403–433.CrossRefGoogle Scholar
  10. 10.
    Chen, M., N. Qin, W. Pei, Q. Li, Q. Yang, Y. Chen, D. Huang, Y. Xiang, and L. Lin (2018) Draft whole-genome sequences of Zhihengliuella halotolerans La12 and Microbacterium kitamiense Sa12, strains with cellulase activity, isolated from the qinghaitibetan plateau. Genome Announc. 6Google Scholar
  11. 11.
    Lin, L., X. Liu, Y. Zhou, L. Guan, J. He, and W. Huang (2016) A novel pH-stable, endoglucanase (JqCel5A) isolated from a saltlake microorganism, Jonesia quinghaiensis. Electron. J. Biotechnol. 24: 56–62.CrossRefGoogle Scholar
  12. 12.
    Maharjan, A., B. Alkotaini, and B. S. Kim (2018) Fusion of carbohydrate binding modules to bifunctional cellulase to enhance binding affinity and cellulolytic activity. Biotechnol. Bioproc. Eng. 23: 79–85.CrossRefGoogle Scholar
  13. 13.
    Lin, L., X. Meng, P. Liu, Y. Hong, G. Wu, X. Huang, C. Li, J. Dong, L. Xiao, and Z. Liu (2009) Improved catalytic efficiency of endo-beta-1,4-glucanase from Bacillus subtilis BME-15 by directed evolution. Appl. Microbiol. Biotechnol. 82: 671–679.CrossRefGoogle Scholar
  14. 14.
    Waterhouse, A., M. Bertoni, S. Bienert, G. Studer, G. Tauriello, R. Gumienny, F. T. Heer, T. A. P. de Beer, C. Rempfer, L. Bordoli, R. Lepore, and T. Schwede (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46: W296–W303.CrossRefGoogle Scholar
  15. 15.
    Tamura, M., T. Miyazaki, Y. Tanaka, M. Yoshida, A. Nishikawa, and T. Tonozuka (2012) Comparison of the structural changes in two cellobiohydrolases, CcCel6A and CcCel6C, from Coprinopsis cinerea—a tweezer-like motion in the structure of CcCel6C. FEBS J. 279: 1871–1882.CrossRefGoogle Scholar
  16. 16.
    Bhat, A., S. Riyaz-Ul-Hassan, N. Ahmad, N. Srivastava, and S. Johri (2013) Isolation of cold-active, acidic endocellulase from Ladakh soil by functional metagenomics. Extremophiles 17: 229–239.CrossRefGoogle Scholar
  17. 17.
    Zhang, G., S. Li, Y. Xue, L. Mao, and Y. Ma (2012) Effects of salts on activity of halophilic cellulase with glucomannanase activity isolated from alkaliphilic and halophilic Bacillus sp. BG-CS10. Extremophiles 16: 35–43.CrossRefGoogle Scholar
  18. 18.
    Fernandes Duarte, A. W., J. A. dos Santos, M. V. Vianna, J. M. Freitas Vieira, V. H. Mallagutti, F. J. Inforsato, L. C. Pinto Wentzel, L. D. Lario, A. Rodrigues, F. C. Pagnocca, A. Pessoa Junior, and L. D. Sette (2018) Cold-adapted enzymes produced by fungi from terrestrial and marine Antarctic environments. Crit. Rev. Biotechnol. 38: 600–619.CrossRefGoogle Scholar
  19. 19.
    Khalili Ghadikolaei, K., J. Gharechahi, K. Haghbeen, K. Akbari Noghabi, G. Hosseini Salekdeh, and H. Shahbani Zahiri (2018) A cold-adapted endoglucanase from camel rumen with high catalytic activity at moderate and low temperatures: an anomaly of truly cold-adapted evolution in a mesophilic environment. Extremophiles 22: 315–326.CrossRefGoogle Scholar
  20. 20.
    Yang, J. and H. Dang (2011) Cloning and characterization of a novel cold-active endoglucanase establishing a new subfamily of glycosyl hydrolase family 5 from a psychrophilic deep-sea bacterium. FEMS Microbiol. Lett. 325: 71–76.CrossRefGoogle Scholar
  21. 21.
    Lin, L., X. Kan, H. Yan, and D. Wang (2012) Characterization of extracellular cellulose-degrading enzymes from Bacillus thuringiensis strains. Electron. J. Biotechnol. 15:3.CrossRefGoogle Scholar
  22. 22.
    Fu, X., P. Liu, L. Lin, Y. Hong, X. Huang, X. Meng, and Z. Liu (2010) A novel endoglucanase (Cel9P) from a marine bacterium Paenibacillus sp. BME-14. Appl. Biochem. Biotechnol. 160: 1627–1636.CrossRefGoogle Scholar
  23. 23.
    Damude, H. G., S. G. Withers, D. G. Kilburn, R. C. Miller, Jr., and R. A. Warren (1995) Site-directed mutation of the putative catalytic residues of endoglucanase CenA from Cellulomonas fimi. Biochemistry 34: 2220–2224.CrossRefGoogle Scholar
  24. 24.
    Koivula, A., L. Ruohonen, G. Wohlfahrt, T. Reinikainen, T. T. Teeri, K. Piens, M. Claeyssens, M. Weber, A. Vasella, D. Becker, M. L. Sinnott, J. Y. Zou, G. J. Kleywegt, M. Szardenings, J. Stahlberg, and T. A. Jones (2002) The active site of cellobiohydrolase Cel6A from Trichoderma reesei: the roles of aspartic acids D221 and D175. J. Am. Chem. Soc. 124: 10015–10024.CrossRefGoogle Scholar
  25. 25.
    Zou, J., G. J. Kleywegt, J. Stahlberg, H. Driguez, W. Nerinckx, M. Claeyssens, A. Koivula, T. T. Teeri, and T. A. Jones (1999) Crystallographic evidence for substrate ring distortion and protein conformational changes during catalysis in cellobiohydrolase Ce16A from trichoderma reesei. Structure 7: 1035–1045.CrossRefGoogle Scholar
  26. 26.
    Iyo, A. H. and C. W. Forsberg (1996) Endoglucanase G from Fibrobacter succinogenes S85 belongs to a class of enzymes characterized by a basic C-terminal domain. Can. J. Microbiol. 42: 934–943.CrossRefGoogle Scholar
  27. 27.
    Nishida, Y., K. Suzuki, Y. Kumagai, H. Tanaka, A. Inoue, and T. Ojima (2007) Isolation and primary structure of a cellulase from the Japanese sea urchin Strongylocentrotus nudus. Biochimie 89: 1002–1011.CrossRefGoogle Scholar
  28. 28.
    Fulop, L., L. S. Tran, Z. Pragai, F. Felfoldi, and T. Ponyi (1996) Cloning and expression of a beta-1,4-endoglucanase gene from Cellulomonas sp. CelB7 in Escherichia coli; purification and characterization of the recombinant enzyme. FEMS Microbiol. Lett. 145: 355–360.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer 2019

Authors and Affiliations

  1. 1.Institute of Molecular Biology and Biotechnology and the Research Center of Life Omics and Health, Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life SciencesAnhui Normal UniversityWuhu, AnhuiChina

Personalised recommendations