Advertisement

Biotechnology and Bioprocess Engineering

, Volume 24, Issue 3, pp 568–578 | Cite as

Inhibition of Autolysosome Formation Improves rrhGAA Production Driven by RAmy3D Promoter in Transgenic Rice Cell Culture

  • Jong Kwang Hong
  • Hong-Yeol Choi
  • Hae-Rim Park
  • Dong-Il KimEmail author
  • Dong-Yup LeeEmail author
Research Paper
  • 35 Downloads

Abstract

Although plant cell cultures produce low yields of recombinant proteins compared to other production systems, a dramatic increase of the heterologous protein production in transgenic rice cells was achieved with the alpha-amylase isozyme 3D (RAmy3D) promoter system. However, this expression system has inherent limitations in that gene expression is initiated by sucrose/glucose deprivation, concurrently triggering starvation-derived autophagy and rapid cell death. Decreased viability and culture longevity subsequently prevent further increment of production. In this study, we introduced autophagy inducers and inhibitors in the rrhGAA-producing transgenic rice cell cultures in order to explore their effects on production controlled by the RAmy3D promoter. The autophagy inducers rapamycin and CCI-779 increased autophagosome and autolysosome while concanamycin A1 and bafilomycin A successfully decreased autolysosome. Interestingly, autophagy inhibitors improved viability, DCW loss, and rrhGAA production, while autophagy inducers deteriorated these profiles compared to the control. As the production conditions under the death phase may facilitate protein degradation, and subsequently exacerbate functional activity, the size variant distribution and enzyme activity of the purified rrhGAAs were evaluated. However, no significant difference in rrhGAA degradation as well as GAA activity was observed compared to the control condition, thus indicating that the autophagy regulation is an efficient approach to increase protein yield in rice cell culture system for rrhGAA production.

Keywords

transgenic rice cell culture alpha-amylase isozyme 3D (RAmy3D) promoter human acid alphaglucosidase (rrhGAA) autophagy regulators 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by Biomedical Research Council of A*STAR (Agency for Science, Technology and Research), Singapore, and the Next-Generation BioGreen 21 Program (SSAC, No. PJ01334605), Rural Development Administration, Republic of Korea.

References

  1. 1.
    Philippidis, A. (2017) The Top 15 Best-Selling Drugs of 2016, Prospect of Price Curbs May Dent Future Results for Blockbusters. In: Editor (ed.) (eds.). Book Title. Publisher, City.Google Scholar
  2. 2.
    Santos, R. B., R. Abranches, R. Fischer, M. Sack, and T. Holland (2016) Putting the spotlight back on plant suspension cultures. Front Plant Sci. 7: 297.CrossRefGoogle Scholar
  3. 3.
    Yao, J., Y. Weng, A. Dickey, and K. Y. Wang (2015) Plants as factories for human pharmaceuticals: applications and challenges. International Journal of Molecular Sciences 16: 28549–28565.CrossRefGoogle Scholar
  4. 4.
    Xu, J. and N. Zhang (2014) On the way to commercializing plant cell culture platform for biopharmaceuticals: present status and prospect. Pharm Bioprocess 2: 499–518.CrossRefGoogle Scholar
  5. 5.
    Lee, S. J., C. I. Park, M. Y. Park, H. S. Jung, W. S. Ryu, S. M. Lim, H. K. Tan, T. H. Kwon, M. S. Yang, and D. I. Kim (2007) Production and characterization of human CTLA4Ig expressed in transgenic rice cell suspension cultures. Protein Expr. Purif. 51: 293–302.CrossRefGoogle Scholar
  6. 6.
    Shin, Y. J., Y. J. Chong, M. S. Yang, and T. H. Kwon (2011) Production of recombinant human granulocyte macrophagecolony stimulating factor in rice cell suspension culture with a human-like N-glycan structure. Plant Biotechnol. J. 9: 1109–1119.CrossRefGoogle Scholar
  7. 7.
    Torres, E., C. Vaquero, L. Nicholson, M. Sack, E. Stoger, J. Drossard, P. Christou, R. Fischer, and Y. Perrin (1999) Rice cell culture as an alternative production system for functional diagnostic and therapeutic antibodies. Transgenic Res. 8: 441–449.CrossRefGoogle Scholar
  8. 8.
    Kim, N. S., H. Y. Yu, N. D. Chung, T. H. Kwon, and M. S. Yang (2014) High-level production of recombinant trypsin in transgenic rice cell culture through utilization of an alternative carbon source and recycling system. Enzyme Microb. Technol. 63: 21–27.CrossRefGoogle Scholar
  9. 9.
    Huang, L. F., C. C. Tan, J. F. Yeh, H. Y. Liu, Y. K. Liu, S. L. Ho, and C. A. Lu (2015) Efficient secretion of recombinant proteins from rice suspension-cultured cells modulated by the choice of signal peptide. PLoS One 10: e0140812.CrossRefGoogle Scholar
  10. 10.
    Liu, Y. K., Y. T. Li, C. F. Lu, and L. F. Huang (2015) Enhancement of recombinant human serum albumin in transgenic rice cell culture system by cultivation strategy. N Biotechnol. 32: 328–334.CrossRefGoogle Scholar
  11. 11.
    Baek, E., S. M. Noh, and G. M. Lee (2017) Anti-apoptosis engineering for improved protein production from CHO cells. Methods Mol. Biol. 1603: 71–85.CrossRefGoogle Scholar
  12. 12.
    Kim, Y. J., E. Baek, J. S. Lee, and G. M. Lee (2013) Autophagy and its implication in Chinese hamster ovary cell culture. Biotechnol. Lett. 35: 1753–1763.CrossRefGoogle Scholar
  13. 13.
    Hwang, S. O. and G. M. Lee (2008) Autophagy and apoptosis in Chinese hamster ovary cell culture. Autophagy 4: 70–72.CrossRefGoogle Scholar
  14. 14.
    Baek, E., C. L. Kim, M. G. Kim, J. S. Lee, and G. M. Lee (2016) Chemical inhibition of autophagy: Examining its potential to increase the specific productivity of recombinant CHO cell lines. Biotechnol. Bioeng. 113: 1953–1961.CrossRefGoogle Scholar
  15. 15.
    Voitsekhovskaja, O. V., A. Schiermeyer, and S. Reumann (2014) Plant peroxisomes are degraded by starvation-induced and constitutive autophagy in tobacco BY-2 suspension-cultured cells. Front Plant Sci. 5: 629.CrossRefGoogle Scholar
  16. 16.
    Wang, W., M. Xu, G. Wang, and G. Galili (2016) Autophagy: An important biological process that protects plants from stressful environments. Front Plant Sci. 7: 2030.Google Scholar
  17. 17.
    Michaeli, S., G. Galili, P. Genschik, A. R. Fernie, and T. Avin-Wittenberg (2016) Autophagy in plants—what’s new on the menu? Trends Plant Sci. 21: 134–144.CrossRefGoogle Scholar
  18. 18.
    Bassham, D. C. (2007) Plant autophagy—more than a starvation response. Curr. Opin. Plant Biol. 10: 587–593.CrossRefGoogle Scholar
  19. 19.
    Yoshimoto, K. (2012) Beginning to understand autophagy, an intracellular self-degradation system in plants. Plant Cell Physiol. 53: 1355–1365.CrossRefGoogle Scholar
  20. 20.
    Lee, J. S., and G. M. Lee (2012) Rapamycin treatment inhibits CHO cell death in a serum-free suspension culture by autophagy induction. Biotechnol. Bioeng. 109: 3093–3102.CrossRefGoogle Scholar
  21. 21.
    Li, S., Y. Liang, M. Wu, X. Wang, H. Fu, Y. Chen, and Z. Wang (2013) The novel mTOR inhibitor CCI-779 (temsirolimus) induces antiproliferative effects through inhibition of mTOR in Bel-7402 liver cancer cells. Cancer Cell Int. 13: 30.CrossRefGoogle Scholar
  22. 22.
    Shacka, J. J., B. J. Klocke, and K. A. Roth (2006) Autophagy, bafilomycin and cell death: the “a-B-cs” of plecomacrolide-induced neuroprotection. Autophagy 2: 228–230.CrossRefGoogle Scholar
  23. 23.
    Yano, K., T. Yanagisawa, K. Mukae, Y. Niwa, Y. Inoue, and Y. Moriyasu (2015) Dissection of autophagy in tobacco BY-2 cells under sucrose starvation conditions using the vacuolar H(+)-ATPase inhibitor concanamycin A and the autophagy-related protein Atg8. Plant Signal Behav. 10: e1082699.CrossRefGoogle Scholar
  24. 24.
    Jung, J.-W., N.-X. Huy, H.-B. Kim, N.-S. Kim, D. Van Giap, and M.-S. Yang (2017) Production of recombinant human acid α-glucosidase with high-mannose glycans in gnt1 rice for the treatment of Pompe disease. Journal of Biotechnology 249: 42–50.CrossRefGoogle Scholar
  25. 25.
    Kwon, J.-Y., S.-H. Jeong, J.-W. Choi, Y.-Y. Pak, and D.-I. Kim (2013) Assessment of long-term cryopreservation for production of hCTLA4Ig in transgenic rice cell suspension cultures. Enzyme and Microbial Technology 53: 216–222.CrossRefGoogle Scholar
  26. 26.
    McVie-Wylie, A. J., K. L. Lee, H. Qiu, X. Jin, H. Do, R. Gotschall, B. L. Thurberg, C. Rogers, N. Raben, M. O’Callaghan, W. Canfield, L. Andrews, J. M. McPherson, and R. J. Mattaliano (2008) Biochemical and pharmacological characterization of different recombinant acid alpha-glucosidase preparations evaluated for the treatment of Pompe disease. Mol. Genet Metab. 94: 448–455.CrossRefGoogle Scholar
  27. 27.
    Li, F., N. Vijayasankaran, A. Y. Shen, R. Kiss, and A. Amanullah (2010) Cell culture processes for monoclonal antibody production. MAbs 2: 466–479.CrossRefGoogle Scholar
  28. 28.
    Mizushima, N. (2007) Autophagy: process and function. Genes Dev. 21: 2861–2873.CrossRefGoogle Scholar
  29. 29.
    Glick, D., S. Barth, and K. F. Macleod (2010) Autophagy: cellular and molecular mechanisms. J. Pathol. 221: 3–12.CrossRefGoogle Scholar
  30. 30.
    Yang, Y. P., L. F. Hu, H. F. Zheng, C. J. Mao, W. D. Hu, K. P. Xiong, F. Wang, and C. F. Liu (2013) Application and interpretation of current autophagy inhibitors and activators. Acta Pharmacol. Sin. 34: 625–635.CrossRefGoogle Scholar
  31. 31.
    Yang, Y., M. Qin, P. Bao, W. Xu, and J. Xu (2017) Secretory carrier membrane protein 5 is an autophagy inhibitor that promotes the secretion of alpha-synuclein via exosome. PLoS One 12: e0180892.CrossRefGoogle Scholar
  32. 32.
    Liu, Y., M. Schiff, K. Czymmek, Z. Talloczy, B. Levine, and S. P. Dinesh-Kumar (2005) Autophagy regulates programmed cell death during the plant innate immune response. Cell 121: 567–577.CrossRefGoogle Scholar
  33. 33.
    Han, Y. K., T. K. Ha, S. J. Lee, J. S. Lee, and G. M. Lee (2011) Autophagy and apoptosis of recombinant Chinese hamster ovary cells during fed-batch culture: effect of nutrient supplementation. Biotechnol. Bioeng. 108: 2182–2192.CrossRefGoogle Scholar
  34. 34.
    Zhao, J., B. Zhai, S. P. Gygi, and A. L. Goldberg (2015) mTOR inhibition activates overall protein degradation by the ubiquitin proteasome system as well as by autophagy. Proc. Natl. Acad. Sci. USA 112: 15790–15797.CrossRefGoogle Scholar
  35. 35.
    Jardon, M. A., B. Sattha, K. Braasch, A. O. Leung, H. C. F. Côté, M. Butler, S. M. Gorski, and J. M. Piret (2012) Inhibition of glutamine-dependent autophagy increases t-PA production in CHO Cell fed-batch processes. Biotechnology and Bioengineering 109: 1228–1238.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer 2019

Authors and Affiliations

  1. 1.Bioprocessing Technology InstituteAgency for Science, Technology and Research (A*STAR)SingaporeSingapore
  2. 2.Department of Biological EngineeringInha UniversityIncheonKorea
  3. 3.School of Chemical EngineeringSungkyunkwan UniversitySuwonKorea

Personalised recommendations