Advertisement

Biotechnology and Bioprocess Engineering

, Volume 24, Issue 4, pp 638–645 | Cite as

Insect-resistant Mechanism of Recombinant Baculovirus AcMNPV-PK2-EGFP against Spodoptera exigua Larvae

  • Lili Wei
  • Chenggang Xu
  • Aihua Liang
  • Yuejun FuEmail author
Research Paper Animal Cell Biotechnology and Biomedical Engineering
  • 48 Downloads

Abstract

Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) is a kind of potential biological insecticide. Ac-PK2 protein encoded by orf123 in AcMNPV genome can inhibit eIF2α family kinases to increase viral adaptation in vivo. In our previous study, it was found that recombinant AcMNPV-PK2-EGFP showed high virulence and anti-insect activity against Sf9 cells and Spodoptera exigua larvae. In this study, we investigated the function of Ac-PK2 protein in the insecticidal activity of AcMNPV and the anti-insect mechanism. AcMNPV-PK2-EGFP up-regulated the expression of Ac-pk2 gene in midgut and nerve cord in infected Spodoptera exigua larvae, compared with these in wild-type treatment group. Transcriptional level of BmK IT and detoxication related genes in epidermis, midgut and nerve cord was detected by quantitative PCR. Phenoloxidase activity assay showed that the insect’s humoral immunity was affected by AcMNPV-PK2-EGFP in a time-effect relationship. Western blot analysis of P53 protein indicated the apoptotic level in the midgut tissue was higher in AcMNPV-BmK IT and AcMNPV-PK2-EGFP co-infeced Spodoptera exigua larvae than that in other treatment groups at 4 h and 8 h postinfection. These results provided a theoretical basis to study the application of AcMNPV-PK2-EGFP as a biological insecticide.

Keywords

Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) baculovirus PK2 biological insecticide Spodoptera exigua 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The present work was supported by grants from National Natural Science Foundation of China (No.31272100) and Natural Science Foundation of Shanxi Province (No.201801D121193) to YJ Fu. It was also supported by grants from Shanxi ‘1331 project’ Collaborative Innovation Center (1331 CIC) to Y. Fu.

References

  1. 1.
    Moulton, J. K., D. A. Pepper, R. K. Jansson, and T. J. Dennehy (2002) Pro-active management of beet armyworm (Lepidoptera: Noctuidae) resistance to tebufenozide and methoxyfenozide: baseline monitoring, risk assessment, and isolation of resistance. J. Econ. Entomol. 95: 414–424.CrossRefPubMedGoogle Scholar
  2. 2.
    Pascual, L., A. K. Jakubowska, J. M. Blanca, J. Cañizares, J. Ferré, G. Gloeckner, H. Vogel, and S. Herrero (2012) The transcriptome of Spodoptera exigua larvae exposed to different types of microbes. Insect. Biochem. Mol. Biol. 42: 557–570.CrossRefPubMedGoogle Scholar
  3. 3.
    Ayres, M. D., S. C. Howard, J. Kuzio, M. Lopez-Ferber, and R. D. Possee (1994) The complete DNA sequence of Autographa californica nuclear polyhedrosis virus. Virology 202: 586–605.CrossRefPubMedGoogle Scholar
  4. 4.
    Li, J. J., C. Cao, S. M. Fixsen, J. M. Young, C. Ono, H. Bando, N. C. Elde, S. Katsuma, T. E. Dever, and F. Sicheri (2015) Baculovirus protein PK2 subverts eIF2α kinase function by mimicry of its kinase domain C-lobe. Proc. Natl. Acad. Sci. USA. 112: E4364–4373.CrossRefPubMedGoogle Scholar
  5. 5.
    Wei, L. L., A. H. Liang, and Y. J. Fu (2018) Expression of Ac-PK2 protein from AcMNPV improved the progeny virus production via regulation of energy metabolism and protein synthesis. RSC Adv. 8: 31071–31080.CrossRefGoogle Scholar
  6. 6.
    Fan, X. J., B. Zheng, Y. J. Fu, Y. Sun, and A. H. Liang (2008) Baculovirus-mediated expression of a Chinese scorpion neurotoxin improves insecticidal efficacy. Chin. Sci. Bull. 53: 1855–1860.Google Scholar
  7. 7.
    Wei, L., L. Cao, Y. Miao, S. Wu, S. Xu, R. Wang, J. Du, A. Liang, and Y. Fu (2017). Transcriptome analysis of Spodoptera frugiperda 9 (Sf9) cells infected with baculovirus, AcMNPV or AcMNPV-BmK IT. Biotechnol. Lett. 39: 1129–1139.CrossRefPubMedGoogle Scholar
  8. 8.
    Gu, Z., F. Li, J. Hu, C. Ding, C. Wang, J. Tian, B. Xue, K. Xu, W. Shen, and B. Li (2017) Sublethal dose of phoxim and Bombyx mori nucleopolyhedrovirus interact to elevate silkworm mortality. Pest Manag. Sci. 73: 554–561.CrossRefPubMedGoogle Scholar
  9. 9.
    James, R. R. and J. Xu (2012) Mechanisms by which pesticides affect insect immunity. J. Invertebr. Pathol. 109: 175–182.CrossRefPubMedGoogle Scholar
  10. 10.
    Bai, P. P., Y. F. Xie, G. M. Shen, D. D. Wei, and J. J. Wang (2014) Phenoloxidase and its zymogen are required for the larval-pupal transition in Bactrocera dorsalis (Diptera: Tephritidae). J. Insect Physiol. 71: 137–146.CrossRefPubMedGoogle Scholar
  11. 11.
    Abass, K., V. Lämsä, P. Reponen, J. Küblbeck, P. Honkakoski, S. Mattila, O. Pelkonen, and J. Hakkola (2012) Characterization of human cytochrome P450 induction by pesticides. Toxicology. 294: 17–26.CrossRefPubMedGoogle Scholar
  12. 12.
    Li, T., C. Cao, T. Yang, L. Zhang, L. He, Z. Xi, G. Bian, and N. Liu (2015) A G-protein-coupled receptor regulation pathway in cytochrome P450-mediated permethrin-resistance in mosquitoes, Culex quinquefasciatus. Sci. Rep. 5: 17772.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wang, R. L., J. Li, C. Staehelin, X. W. Xin, Y. J. Su, and R. S. Zeng (2015) Expression analysis of two P450 monooxygenase genes of the tobacco cutworm moth (Spodoptera litura) at different developmental stages and in response to plant allelochemicals. J. Chem. Ecol. 41: 111–119.CrossRefPubMedGoogle Scholar
  14. 14.
    Fu, Y., X. Li, J. Du, S. Zheng, and A. Liang (2015) Regulation analysis of AcMNPV-mediated expression of a Chinese scorpion neurotoxin under the IE1, P10 and PH promoter in vivo and its use as a potential bio-insecticide. Biotechnol. Lett. 37: 1929–1936.CrossRefPubMedGoogle Scholar
  15. 15.
    Jiang, H., Y. Wang, X. Q. Yu, and M. R. Kanost (2003) Prophenoloxidase- activating proteinase-2 from hemolymph of Manduca Sexta. J. Biol. Chem. 278: 3552–3561.CrossRefPubMedGoogle Scholar
  16. 16.
    Sparks, W. O., L. C. Bartholomay, and B. Bonning (2008) Insect immunity to viruses. pp. 209–242. In: N. E. Beckage (eds.). Insect Immunology. Academic Press, NY, USA.CrossRefGoogle Scholar
  17. 17.
    Lu, A., Q. Zhang, J. Zhang, B. Yang, K. Wu, W. Xie, Y. X. Luan, and E. Ling (2014) Insect prophenoloxidase: the view beyond immunity. Front Physiol. 5: 252.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Dubovskiy, I. M., N. A. Kryukova, V. V. Glupov, and N. A. Ratcliffe (2016) Encapsulation and nodulation in insects. Invertebrate Surviv. J. 13: 229–246.Google Scholar
  19. 19.
    Nappi, A. J. and E. Vass (1993) Melanogenesis and the generation of cytotoxic molecules during insect cellular immune-reactions. Pigment. Cell Res. 6: 117–126.CrossRefPubMedGoogle Scholar
  20. 20.
    Nappi, A. J. and E. Ottaviani (2000) Cytotoxicity and cytotoxic molecules in invertebrates. Bioessays. 22: 469–480.CrossRefPubMedGoogle Scholar
  21. 21.
    Komarov, D. A., A. D. Ryazanova, I. A. Slepneva, V. V. Khramtsov, I. M. Dubovskiy, and V. V. Glupov (2009) Pathogen-targeted hydroxyl radical generation during melanization in insect hemolymph: EPR study of a probable cytotoxicity mechanism. Appl. Magn. Reson. 35: 495–501.CrossRefGoogle Scholar
  22. 22.
    Bandy, B. and A. J. Davison (1990) Mitochondrial mutations may increase oxidative stress: implications for carcinogenesis and aging? Free Radic. Biol. Med. 8: 523–539.CrossRefPubMedGoogle Scholar
  23. 23.
    Oliveira, J. H. M., O. A. C. Talyuli, R. L. S. Goncalves, G. O. Paiva-Silva, M. H. F. Sorgine, P. H, Alvarenga, and P. L. Oliveira (2017) Catalase protects Aedes aegypti from oxidative stress and increases midgut infection prevalence of Dengue but not Zika. PLoS Negl. Trop. Dis. 11: e0005525.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Feyereisen, R. (2006) Evolution of insect P450. Biochem. Soc. Trans. 34: 1252–1255.CrossRefPubMedGoogle Scholar
  25. 25.
    Karunker, I., J. Benting, B. Lueke, T. Ponge, R. Nauen, E. Roditakis, J. Vontas, K. Gorman, I. Denholm, and S. Morin (2008) Over-expression of cytochrome P450 CYP6CM1 is associated with high resistance to imidacloprid in the B and Q biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae). Insect Biochem. Mol. Biol. 38: 634–644.CrossRefPubMedGoogle Scholar
  26. 26.
    Odonbayar, B., T. Murata, J. Batkhuu, K. Yasunaga, R. Goto, and K. Sasaki (2016) Antioxidant flavonols and phenolic compounds from Atraphaxis frutescens and their inhibitory activities against insect phenoloxidase and mushroom tyrosinase. J. Nat. Prod. 79: 3065–3071.CrossRefPubMedGoogle Scholar
  27. 27.
    Sugumaran, M. (2002) Comparative biochemistry of eumelanogenesis and the protective roles of phenoloxidase and melanin in insects. Pigment. Cell Res. 15: 2–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Shrestha, S. and Y. Kim (2008) Eicosanoids mediate prophenoloxidase release from oenocytoids in the beet armyworm Spodoptera exigua. Insect Biochem. Mol. Biol. 38: 99–112.CrossRefPubMedGoogle Scholar
  29. 29.
    Seo, S., S. Lee, Y. Hong, and Y. Kim (2012) Phospholipase A2 inhibitors synthesized by two entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp temperata. Appl. Environ. Microbiol. 78: 3816–3823.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kanost, M. R., H. Jiang, and X. Q. Yu (2004) Innate immune responses of a lepidopteran insect, Manduca sexta. Immunol. Rev. 198: 97–105.CrossRefPubMedGoogle Scholar
  31. 31.
    Kang, S., S. Han, and Y. Kim (2004) Identification of an entomopathogenic bacterium, Photorhabdus temperata subsp. temperata, in Korea. J. Asia Pac. Entomol. 7: 331–337.CrossRefGoogle Scholar
  32. 32.
    Hu, K. and J. M. Webster (2000) Antibiotic production in relation to bacterial growth and nematode development in Photorhabdus-heterorhabditis infected Galleria mellonella larvae. FEMS Microbiol. Lett. 189: 219–223.PubMedGoogle Scholar
  33. 33.
    Yuan, C., L. Xing, M. Wang, X. Wang, M. Yin, Q. Wang, Z. Hu, and Z. Zou (2017) Inhibition of melanization by serpin-5 and serpin-9 promotes baculovirus infection in cotton bollworm Helicoverpa armigera. PLoS Pathog. 13: e1006645.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer 2019

Authors and Affiliations

  • Lili Wei
    • 1
  • Chenggang Xu
    • 1
  • Aihua Liang
    • 1
  • Yuejun Fu
    • 1
    Email author
  1. 1.Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of BiotechnologyShanxi UniversityTaiyuanChina

Personalised recommendations