Biotechnology and Bioprocess Engineering

, Volume 24, Issue 3, pp 500–506 | Cite as

Elevating Limonene Production in Oleaginous Yeast Yarrowia lipolytica via Genetic Engineering of Limonene Biosynthesis Pathway and Optimization of Medium Composition

  • Bo-Qian Cheng
  • Liu-Jing WeiEmail author
  • Yu-Bei Lv
  • Jun Chen
  • Qiang Hua
Research Paper


As an alternative terpenoid producer, non-conventional oleaginous yeast Yarrowia lipolytica was chosen for limonene production. Y. lipolytica can give high biomass yield and metabolize a broad range of substrates such as glycerol, alkanes, fatty acid, fats, and oils. As previously reported, optimization of limonene synthesis pathway and mevalonate (MVA) pathway leads to the accumulation of 112-fold higher limonene as compared to an initial strain. In this study, we introduced an additional copy of limonene synthesis gene (LS), which resulted in an increase of limonene production. This engineered strain was used to carry out further optimization study. Amongst all the carbon sources tested, the highest level of limonene production was obtained from glycerol, and citrate was selected as an auxiliary carbon source. In fed-batch fermentation with an optimized medium, the engineered strain was found to produce 165.3 mg/L limonene, which corresponds to the highest yield till date for the production of limonene in Y. lipolytica.


limonene Yarrowia lipolytica carbon source fed-batch fermentation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This study was financially supported by National Natural Science Foundation of China (21776081, 21576089) and Natural Science Foundation of Shanghai (18ZR1410000).

Supplementary material

12257_2018_497_MOESM1_ESM.pdf (195 kb)
Supplementary material, approximately 199 KB.


  1. 1.
    Sun, J. (2007) D-limonene: Safety and clinical applications. Altern. Med. Rev. 12: 259–264.Google Scholar
  2. 2.
    Duetz, W. A., H. Bouwmeester, J. B. van Beilen, and B. Witholt (2003) Biotransformation of limonene by bacteria, fungi, yeasts, and plants. Appl. Microbiol. Biot. 61: 269–277.CrossRefGoogle Scholar
  3. 3.
    Ndayishimiye, J., D. J. Lim, and B. S. Chun (2017) Impact of extraction conditions on bergapten content and antimicrobial activity of oils obtained by a co-extraction of citrus by-products using supercritical carbon dioxide. Biotechnol. Bioproc. E 22: 586–596.CrossRefGoogle Scholar
  4. 4.
    Nichkova, M., X. Fu, Z. Yang, P. Zhong, J. R. Sanborn, D. Chang, S. J. Gee, and B. D. Hammock (2009) Immunochemical screening of pesticides (simazine and cypermethrin) in orange oil. J. Agr. Food Chem. 57: 5673–5679.CrossRefGoogle Scholar
  5. 5.
    Serra, S., C. Fuganti, and E. Brenna (2005) Biocatalytic preparation of natural flavours and fragrances. Trends Biotechnol. 23: 193–198.CrossRefGoogle Scholar
  6. 6.
    Alonso-Gutierrez, J., R. Chan, T. S. Batth, P. D. Adams, J. D. Keasling, C. J. Petzold, and T. S. Lee (2013) Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production. Metab. Eng. 19: 33–41.CrossRefGoogle Scholar
  7. 7.
    Jongedijk, E., K. Cankar, J. Ranzijn, S. van der Krol, H. Bouwmeester, and J. Beekwilder (2015) Capturing of themonoterpene olefin limonene produced in Saccharomyces cerevisiae. Yeast 32: 159–171.Google Scholar
  8. 8.
    Alonso-Gutierrez, J., E. M. Kim, T. S. Batth, N. Cho, Q. J. Hu, L. J. G. Chan, C. J. Petzold, N. J. Hinson, P. D. Adams, J. D. Keasling, H. G. Martin, and T. S. Lee (2015) Principal component analysis of proteomics (PCAP) as a tool to direct metabolic engineering. Metab. Eng. 28: 123–133.CrossRefGoogle Scholar
  9. 9.
    Groenewald, M., T. Boekhout, C. Neuveglise, C. Gaillardin, P. W. M. van Dijck, and M. Wyss (2014) Yarrowia lipolytica: Safety assessment of an oleaginous yeast with a great industrial potential. Crit. Rev. Microbiol. 40: 187–206.CrossRefGoogle Scholar
  10. 10.
    Cao, X., L. J. Wei, J. Y. Lin, and Q. Hua (2017) Enhancing linalool production by engineering oleaginous yeast Yarrowia lipolytica. Bioresource Technol. 245: 1641–1644.CrossRefGoogle Scholar
  11. 11.
    Gao, S. L., Y. Y. Tong, L. Zhu, M. Ge, Y. A. Zhang, D. J. Chen, Y. Jiang, and S. Yang (2017) Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous beta-carotene production. Metab. Eng. 41: 192–201.CrossRefGoogle Scholar
  12. 12.
    Yang, X., K. Nambou, L. J. Wei, and Q. Hua (2016) Heterologous production of alpha-farnesene in metabolically engineered strains of Yarrowia lipolytica. Bioresource Technol. 216: 1040–1048.CrossRefGoogle Scholar
  13. 13.
    Cao, X., Y. B. Lv, J. Chen, T. Imanaka, L. J. Wei, and Q. Hua (2016) Metabolic engineering of oleaginous yeast Yarrowia lipolytica for limonene overproduction. Biotechnol. Biofuels 9: 11.CrossRefGoogle Scholar
  14. 14.
    Michely, S., C. Gaillardin, J. M. Nicaud, and C. Neuveglise (2013) Comparative physiology of oleaginous species from the Yarrowia clade. PLoS One 8.Google Scholar
  15. 15.
    Barth, G. and C. Gaillardin (1997) Physiology and genetics of the dimorphic fungus Yarrowia lipolytica. FEMS Microbiol. Rev. 19: 219–237.CrossRefGoogle Scholar
  16. 16.
    Du, F. L., H. L. Yu, J. H. Xu, and C. X. Li (2014) Enhanced limonene production by optimizing the expression of limonene biosynthesis and MEP pathway genes in E. coli. Bioresour. Bioprocess. 1: 10.CrossRefGoogle Scholar
  17. 17.
    Kim, J. H., S. W. Kim, D. Q. A. Nguyen, H. Li, S. B. Kim, Y. G. Seo, J. K. Yang, I. Y. Chung, D. H. Kim, and C. J. Kim (2009) Production of beta-carotene by recombinant Escherichia coli with engineered whole mevalonate pathway in batch and fed-batch cultures. Biotechnol. Bioproc. E. 14: 559–564.CrossRefGoogle Scholar
  18. 18.
    Huang, Y. Y., X. X. Jian, Y. B. Lv, K. Q. Nian, Q. Gao, J. Chen, L. J. Wei, and Q. Hua (2018) Enhanced squalene biosynthesis in Yarrowia lipolytica based on metabolically engineered acetyl-CoA metabolism. J. Biotechnol. 281: 106–114.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer 2019

Authors and Affiliations

  • Bo-Qian Cheng
    • 1
  • Liu-Jing Wei
    • 1
    Email author
  • Yu-Bei Lv
    • 1
  • Jun Chen
    • 1
  • Qiang Hua
    • 1
    • 2
  1. 1.State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiChina
  2. 2.Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT)ShanghaiChina

Personalised recommendations