Biotechnology and Bioprocess Engineering

, Volume 24, Issue 3, pp 552–559 | Cite as

Ectopic Overexpression of Teff Grass (Eragrostis tef) Phi-class Glutathione S-transferase 1 (EtGSTF1) Enhances Prokaryotic Cell Survivability against Diverse Abiotic Stresses

  • Ki-Won Lee
  • Serim Hong
  • Md. Atikur Rahman
  • Hee Chung Ji
  • Joon-Yung Cha
  • Chris Stephen Jones
  • Daeyoung SonEmail author
  • Sang-Hoon LeeEmail author
Research Paper


The glutathione S-transferases (GSTs) are encoded by a large gene family and well conserved in all living organisms; however they have evolved and are classified clearly according to each kingdom. GSTs are a dimeric protein that has been reported to maintain redox homeostasis in cells, and to protect organisms against oxidative damage. Recently, we isolated a GST coding gene from stress-treated teff grass (Eragrostis tef) and identified it as a plant-specific phi class GST (EtGSTF1) possessing conserved phi class-specific GST N- and C-terminal domains, GSH binding site, substrate binding pocket, and dimer interface. We found that overexpression of plant-specific phi class EtGSTF1 confers diverse abiotic stress tolerances including salt, osmotic, and heat stresses in E. coli which does not possess phi class GSTs. In addition, EtGSTF1 expression helps the E. coli cells tolerate arsenic (As)-induced cell toxicity. Collectively, although plantae and prokaryotae have differentiated a few billions of years ago, the plant-specific phi class EtGSTF1 could protect prokaryotic organisms by detoxification of molecules under diverse abiotic stresses.


abiotic stress arsenic ectopic overexpression glutathione S-transferases teff grass 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research work was supported by the “Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ012187)”. This study was also supported by Postdoctoral Fellowship Program of National Institute of Animal Science funded by Rural Development Administration (RDA), Republic of Korea.

Supplementary material

12257_2018_495_MOESM1_ESM.pdf (55 kb)
Supplementary Fig. 1. Sequence of teff grass GSTF1 (EtGSTF1). Nucleotide and deduced amino acid sequence of EtGSTF1. Numbers at left indicate the nucleotide (up) and amino acid residue (down) position.


  1. 1.
    Pompella, A., A. Visvikis, A. Paolicchi, V. D. Tata, and A. F. Casini (2003) The changing faces of glutathione, a cellular protagonist. Biochem. Pharmacol. 66: 1499–1503.CrossRefGoogle Scholar
  2. 2.
    Couto, N., N. Malys, S. J. Gaskell, and J. Barber (2013) Partition and turnover of glutathione reductase from Saccharomyces cerevisiae: a proteomic approach. J. Proteome Res. 12: 2885–2894.CrossRefGoogle Scholar
  3. 3.
    Pastore, A., F. Piemonte, M. Locatelli, A. Lo Russo, L. M. Gaeta, G. Tozzi, and G. Federici (2001) Determination of blood total, reduced, and oxidized glutathione in pediatric subjects. Clinical Chem. 47: 1467–1469.Google Scholar
  4. 4.
    Wilce, M. C. J., and M. W. Parker (1994) Structure and function of glutathione S-transferases. Biochim. Biophys. Acta. 1205: 1–18.CrossRefGoogle Scholar
  5. 5.
    Miller, G., N. Suzuki, S. Ciftci-Yilmaz, and R. Mittler (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 33: 453–467.CrossRefGoogle Scholar
  6. 6.
    Gallé, Á., Z. Czékus, K. Bela, E. Horváth, A. Ördög, J. Csiszár, and P. Poór (2019) Plant glutathione transferases and light. Front. Plant Sci. 9:1944.CrossRefGoogle Scholar
  7. 7.
    Lai, A. G., C. J. Doherty, B. Mueller-Roeber, S. A. Kay, J. H. M. Schippers, and P. P. Dijkwel (2012) Circadian clock-associated 1 regulates ROS homeostasis and oxidative stress responses. Proc. Natl. Acad. Sci. USA. 109: 17129–17134.CrossRefGoogle Scholar
  8. 8.
    Gechev, T. S., F. Van Breusegem, J. M. Stone, I. Denev, and C. Laloi (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays. 28: 1091–1101.CrossRefGoogle Scholar
  9. 9.
    Dixon, D. P., A. Lapthorn, and R. Edwards (2002) Plant glutathione transferases. Genome Biol. 3: 3004.CrossRefGoogle Scholar
  10. 10.
    Mukanganyama, S., M. Bezabih, M. Robert, B. T. Ngadjui, G. F. W. Kapche, F. Ngandeu, and B. Abegaz (2011) The evaluation of novel natural products as inhibitors of human glutathione transferase P1-1. J. Enzyme Inhib. Med. Chem. 26: 460–467.CrossRefGoogle Scholar
  11. 11.
    Allocati, N., L. Federici, M. Masulli, and C. Di Ilio (2009) Glutathione transferases in bacteria. FEBS. J. 276: 58–75.CrossRefGoogle Scholar
  12. 12.
    Marrs, K. A. (1996) The functions and regulation of glutathione s-transferases in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 127–158.CrossRefGoogle Scholar
  13. 13.
    Chronopoulou, E., N. Georgakis, I. Nianiou-Obeidat, P. Madesis, F. Perperopoulou, F. Pouliou, E. Vasilopoulou, E. Ioannou, F. S. Ataya, and N. E. Labrou (2017) Plant glutathione transferases in abiotic stress response and herbicide resistance. In: Hossain, M.A., Mostofa, M.G., Diaz-Vivancos, P., Burritt, D.J., Fujita, M., Tran, L.S.P. (Eds.), Glutathione in plant growth, development, and stress tolerance. Springer International Publishing, Cham. pp. 215–233.CrossRefGoogle Scholar
  14. 14.
    Nianiou-Obeidat, I., P. Madesis, C. Kissoudis, G. Voulgari, E. Chronopoulou, A. Tsaftaris, and N. E. Labrou (2017) Plant glutathione transferase-mediated stress tolerance: functions and biotechnological applications. Plant Cell Rep. 36: 791–805.CrossRefGoogle Scholar
  15. 15.
    Dixon, D. P., I. Cummins, D. J. Cole, and R. Edwards (1998) Glutathione-mediated detoxification systems in plants. Curr. Opin. Plant Biol. 1: 258–266.CrossRefGoogle Scholar
  16. 16.
    Hu, T. (2014) A glutathione s-transferase confers herbicide tolerance in rice. Crop Breed.Appl.Biot. 14: 76–81.CrossRefGoogle Scholar
  17. 17.
    Kim, Y.-O., H.-J. Bae, E. Cho, and H. Kang (2017) Exogenous glutathione enhances mercury tolerance by inhibiting mercury entry into plant cells. Front. Plant Sci. 8:683.CrossRefGoogle Scholar
  18. 18.
    Kumar, S., and P. K. Trivedi (2018) Glutathione S-transferases: role in combating abiotic stresses including arsenic detoxification in plants. Front. Plant Sci. 9:751.CrossRefGoogle Scholar
  19. 19.
    Liu, S.-H., G.-M. Zeng, Q.-Y. Niu, Y. Liu, L. Zhou, L.-H. Jiang, X.-f. Tan, P. Xu, C. Zhang, and M. Cheng (2017) Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: a mini review. Bioresource Technol. 224: 25–33.CrossRefGoogle Scholar
  20. 20.
    Shehu, D., N. Abdullahi, and Z. Alias (2019) Cytosolic glutathione S-transferase in bacteria: a review. Pol. J. Environ. Stud. 28: 515–528.CrossRefGoogle Scholar
  21. 21.
    Zablotowicz, R. M., R. E. Hoagland, M. A. Locke, and W. J. Hickey (1995) Glutathione-s-transferase activity and metabolism of glutathione conjugates by rhizosphere bacteria. Appl. Environ. Microbiol. 61: 1054–1060.Google Scholar
  22. 22.
    Kunieda, T., T. Fujiwara, T. Amano, and Y. Shioi (2005) Molecular cloning and characterization of a senescence-induced tau-class glutathione s-transferase from barley leaves. Plant Cell Physiol. 46: 1540–1548.CrossRefGoogle Scholar
  23. 23.
    Davidson, J. M., D. Min, RM. Aiken, and G.J.Kluitenberg (2018) Evaluating teff grass as a summer forage. Kansas Agricultural Experiment Station Research Reports, USA. pp. 1–5.Google Scholar
  24. 24.
    Lee, K., M. A. Rahman, G. Choi, H. Ji, T. Hwang, and S. Lee (2018) Identification of differentially expressed abiotic stress-induced genes in teff grass (Eragrostis tef) leaves. JAPS 28: 1189–1193.Google Scholar
  25. 25.
    Lee, S.-H., K.-W. Lee, D.-G. Lee, D. Son, S. J. Park, K.-Y. Kim, H. S. Park, and J.-Y. Cha (2015) Identification and functional characterization of Siberian wild rye (Elymus sibiricus L.) small heat shock protein 16.9 gene (EsHsp16.9) conferring diverse stress tolerance in prokaryotic cells. Biotechnol. Lett. 37: 881–890.CrossRefGoogle Scholar
  26. 26.
    Eaton, D. L., and T. K. Bammler (1999) Concise review of the glutathione S-transferases and their significance to toxicology. Toxicol. Sci. 49: 156–164.CrossRefGoogle Scholar
  27. 27.
    Oakley, A. (2011) Glutathione transferases: a structural perspective. Drug Metab.Rev. 43: 138–151.CrossRefGoogle Scholar
  28. 28.
    Sheehan, D., G. Meade, V. M. Foley, and C. A. Dowd (2001) Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem. J. 360: 1–16.CrossRefGoogle Scholar
  29. 29.
    Frova, C. (2006) Glutathione transferases in the genomics era: New insights and perspectives. Biomol. Eng. 23: 149–169.CrossRefGoogle Scholar
  30. 30.
    Allocati, N., B. Favaloro, M. Masulli, M. F. Alexeyev, and C. Di Ilio (2003) Proteus mirabilis glutathione S-transferase B1-1 is involved in protective mechanisms against oxidative and chemical stresses. Biochem. J. 373: 305–311.CrossRefGoogle Scholar
  31. 31.
    Lee, K.-W., M. A. Rahman, K.-Y. Kim, G. J. Choi, J.-Y. Cha, M. S. Cheong, A. M. Shohael, C. Jones, and S.-H. Lee (2018) Overexpression of the alfalfa DnaJ-like protein (MsDJLP) gene enhances tolerance to chilling and heat stresses in transgenic tobacco plants. Turk. J. Biol. 42: 12–22.CrossRefGoogle Scholar
  32. 32.
    Hossain, M., M. R. Ismail, M. K. Uddin, M. Islam, and M. Ashrafuzzaman (2013) Efficacy of ascorbate-glutathione cycle for scavenging H2O2 in two contrasting rice genotypes during salinity stress. Aus. J.Crop Sci. 7: 1801–1808.Google Scholar
  33. 33.
    Pyngrope, S., K. Bhoomika, and R. S. Dubey (2013) Reactive oxygen species, ascorbate-glutathione pool, and enzymes of their metabolism in drought-sensitive and tolerant indica rice (Oryza sativa L.) seedlings subjected to progressing levels of water deficit. Protoplasma. 250: 585–600.CrossRefGoogle Scholar
  34. 34.
    Ryu, H. Y., S. Y. Kim, H. M. Park, J. Y. You, B. H. Kim, J. S. Lee, and K. H. Nam (2009) Modulations of AtGSTF10 expression induce stress tolerance and BAK1-mediated cell death. Biochem. Biophys. Res. Commun. 379: 417–422.CrossRefGoogle Scholar
  35. 35.
    Chen, J.-H., H.-W. Jiang, E.-J. Hsieh, H.-Y. Chen, C.-T. Chien, H.-L. Hsieh, and T.-P. Lin (2012) Drought and salt stress tolerance of an Arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid. Plant Physiol. 158: 340–351.CrossRefGoogle Scholar
  36. 36.
    Kumar, S., R. S. Dubey, R. D. Tripathi, D. Chakrabarty, and P. K. Trivedi (2015) Omics and biotechnology of arsenic stress and detoxification in plants: current updates and prospective. Environ. Int. 74: 221–230.CrossRefGoogle Scholar
  37. 37.
    Sharma, I. (2012) Arsenic induced oxidative stress in plants. Biologia. 67: 447–453.CrossRefGoogle Scholar
  38. 38.
    Rahman, M. A., S.-H. Lee, K.-Y. Kim, H. S. Park, T. Y. Hwang, G. J. Choi, and K.-W. Lee (2016) Arsenic-induced differentially expressed genes identified in Medicago sativa L. roots. J. Korean Soc. Grassl. Forage Sci. 36: 243–247.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer 2019

Authors and Affiliations

  • Ki-Won Lee
    • 1
  • Serim Hong
    • 2
  • Md. Atikur Rahman
    • 1
  • Hee Chung Ji
    • 1
  • Joon-Yung Cha
    • 3
  • Chris Stephen Jones
    • 4
  • Daeyoung Son
    • 2
    • 3
    Email author
  • Sang-Hoon Lee
    • 5
    Email author
  1. 1.Grassland & Forages DivisionNational Institute of Animal Science, Rural Development AdministrationCheonanKorea
  2. 2.Department of Plant MedicineGyeongsang National UniversityJinjuKorea
  3. 3.Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuKorea
  4. 4.Feed and Forage BiosciencesInternational Livestock Research InstituteAddis AbabaEthiopia
  5. 5.Animal Genetic Resources Research CenterNational Institute of Animal Science, Rural Development AdministrationNamwonKorea

Personalised recommendations