Production of 5-aminolevulinic Acid by Recombinant Streptomyces coelicolor Expressing hemA from Rhodobacter sphaeroides

  • Nu Thi Tran
  • Diep Ngoc Pham
  • Chang-Joon KimEmail author
Research Paper


Over the past two decades, intensive efforts have been made to construct recombinant Escherichia coli or Corynebacterium glutamicum by engineering C4 or C5 pathways to improve microbial production of 5-aminolevulinic acid (ALA), which has medical application for photodynamic cancer therapy and tumor diagnosis. In this study, we explored the feasibility of enhanced production of ALA by expressing C4 pathway enzyme, ALA synthase, in Streptomyces coelicolor, and medium optimization. The hemA from Rhodobacter sphaeroides was successfully integrated into the chromosome of Streptomyces coelicolor by conjugal transformation, and recombinant Streptomyces cells expressed well the foreign hemA. Glucose promoted ALA synthesis, and yeast extract showed a strong positive effect on ALA production. Optimization of casamino acid, peptone, malt extract, glycine, and succinic acid increased the product titer. In flask cultures, cell growth and ALA production of recombinant Streptomyces were 2.3 and 3.0-fold higher, respectively, in optimal medium than those of control. The maximum ALA, 137mg/L, was obtained at 28 h in bioreactor culture, in which 3.1-fold higher cell mass and 2.9-fold greater volumetric productivity were achieved, compared to those in flask cultures.


recombinant Streptomyces coelicolor C4 pathway hemA overexpression 5-aminolevulinic acid medium optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Basic Science Research Program through the National Research foundation (TMRF), funded by the Ministry of Education, Science and Technology (NRF-2012R1A1A2007214 and 2017R1D1A1B03029032).

Supplementary material

12257_2018_484_MOESM1_ESM.pdf (76 kb)
Supplementary material, approximately 76 MB.


  1. 1.
    Wachowska, M., A. Muchiwiez, M. Firczuk, M. Gabrysiak, M. Winiarska, M. Wanezyk, K. Bojarezuk, and J. Golab (2011) Aminolevulinic acid (ALA) as a prodrug in photodynamic therapy of cancer. Molecules 16: 4140–4164.CrossRefGoogle Scholar
  2. 2.
    Liu, S., G. Zhang, X. Li, and J. Zhang (2014) Microbial production and application of 5-aminolevulinic acid. Appl. Microbiol. Biotechnol. 98: 7349–7357.CrossRefGoogle Scholar
  3. 3.
    Sasaki, K., M. Watanabe, T. Tanaka, and T. Tanaka (2002) Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Appl. Microbiol. Biotechnol. 58: 23–29.CrossRefGoogle Scholar
  4. 4.
    Nishikawa, S., K. Watanabe, T. Tanaka, and N. Miyachi (1999) Rhodobacter sphaeroides mutants which accumulate 5-aminolevulinic acid under aerobic and dark conditions. J. Biosci. Bioeng. 87: 798–804.CrossRefGoogle Scholar
  5. 5.
    Xie, L., D. Hall, M. A. Eiteman, and E. Airman (2003) Optimization of recombinant aminolevulinate synthase production in Escherichia coli using factorial design. Appl. Microbiol. Biot. 63: 267–273.CrossRefGoogle Scholar
  6. 6.
    Fu, W., J. Lin, and P. Cen (2007) 5-Aminolevulinate production with recombinant Escherichia coli using a rare codon optimizer host strain. Appl. Microbiol. Biot. 75: 777–782.CrossRefGoogle Scholar
  7. 7.
    Lee, D.-H., W.-J Jun, K.-M. Kim, D.-H. Shin, H.-Y. Cho, and B.-S. Hong (2003) Inhibition of 5-aminolevulinic acid dehydrogenase in recombinant Escherichia coli using D-glucose. Enzyme Microb. Technol. 32: 27–34.CrossRefGoogle Scholar
  8. 8.
    Lin, J., W. Fu, and P. Cen (2009) Characterization of 5-aminolevulinate synthase from Agrobacterium radiobacter, screening new inhibitors for 5-aminolevulinate dehydratase from Escherichia coli and their potential use for high 5-aminolevulinate production. Biores. Technol. 100: 2293–2297.CrossRefGoogle Scholar
  9. 9.
    Qin, G., J. Lin, X. Liu, and P. Cen (2006) Effects of medium composition on production of 5-aminolevulinic acid by recombinant Escherichia coli. J. Biosci. Bioeng. 102: 316–322.CrossRefGoogle Scholar
  10. 10.
    Zhang, J., Z. Kang, J. Chen, and G. Du (2015) Optimization of the heme biosynthesis pathway for the production of 5-aminolevulinic acid in Escherichia coli. Sci. Rep. 5: 8584.Google Scholar
  11. 11.
    Kang, Z., Y. Wang, P. Gu, Q. Wang, and Q. Qi (2011) Engineering Escherichia coli for 5-aminolevulinic acid from glucose. Metab. Eng. 13: 492–498.CrossRefGoogle Scholar
  12. 12.
    Li, E, Y. Wang, K. Gong, Q. Wang, Q. Liang, and Q. Qi (2014) Constitutive expression of RyhB regulates the heme biosynthesis pathway and increases the 5-aminolevulinic acid accumulation in Escherichia coli. FEMS Microbiol. Lett. 350: 209–215.CrossRefGoogle Scholar
  13. 13.
    Feng, L., Y. Zhang, J. Fu, Y. Mao, T. Chen, X. Zhao, and Z. Wang (2015) Metabolic engineering of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid, Biotechnol. Bioeng. 113: 1284–1293.CrossRefGoogle Scholar
  14. 14.
    Yang, P., W. Liu, X. Cheng, J. Wang, Q. Wang, and Q. Qi (2016) A new strategy for production of 5-aminolevulinic acid in recombinant Corynebacterium glutamicum with high yield. Appl. Environ. Microb. 82: 2709–2717.CrossRefGoogle Scholar
  15. 15.
    Yu, X., H. Jin, W. Liu, Q. Wang, and Q. Qi (2015) Engineering Corynebacterium glutamicum to produce 5-aminolevulinic acid from glucose. Microb. Cell Fact. 14: 183.CrossRefGoogle Scholar
  16. 16.
    Ramzi, A. B., J. E. Hyeon, S. W. Kim, C. Park, and S. O. Han (2015) 5-Aminolevulinic acid production in engineered Corynebacterium glutamicum via C5 biosynthesis pathway. Enzyme Microb. Technol. 81: 1–7.CrossRefGoogle Scholar
  17. 17.
    Anne, J., K. Vrancken, L.V. Mellaert, J.V. Impe, and K. Bernaerts (2014) Protein secretion biotechnology in gram-positive bacteria with special emphasis on Streptomyces lividans. Biochim. Biophys. Acta 1843: 1750–17CrossRefGoogle Scholar
  18. 18.
    Barka, E. A., P. Vatsa, L. Sanchez, N. Gaveau-Vaillant, C. Jacquard, H.-P. Klenk, C. Clement, Y. Ouhdouch, and G. P. Wezel (2015) Taxonomy, physiology, and natural products of Actinobacteria. Microbiol. Mol. Bio. Rev. 80: 1–43.Google Scholar
  19. 19.
    Tezuka, T. and Y. Ohnishi (2014) Two glycine riboswitches activate the glycine cleavage system essential for glycine detoxification in Streptomyces griseus. J. Bacteriol. 196: 1369–1376.CrossRefGoogle Scholar
  20. 20.
    Bentley, S. D., K. F. Chater, A.-M. Gerdeno-Tarraga, G. L. Challis, N. R. Thomson, K. D. James, D. E. Harris, M. A. Quail, H. Kieser, D. Harper, and other 33 authors (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature All: 141-147.Google Scholar
  21. 21.
    Amara, A., E. Takano, and R. Breitling (2018) Development and validation of an updated computational model of Streptomyces coelicolor primary and secondary metabolism. BMC Genomics 19:519.Google Scholar
  22. 22.
    Muhamadali, H., Y. Xu, D.I. Ellis, D.K. Trivedi, N.J.W. Rattray, K. Bernaerts, and R. Goodacre (2015) Metabolomics investigation of recombinant inTNFa production in Streptomyces lividans. Microb. Cell Fact. 14: 157.CrossRefGoogle Scholar
  23. 23.
    Esnault, C, T. Dulermo, A. Smirnov, A. Askora, M. David, A. Deniset-Besseau, I.-B. Holland, and M.-J. Virolle (2017) Strong antibiotic production is correlated with highly active oxidative metabolism in Streptomyces coelicolor M145. Sci. Rep. 7: 200.CrossRefGoogle Scholar
  24. 24.
    Robertsen, H. L., T. Weber, H. U. Kim, and S.Y. Lee (2018) Toward systems metabolic engineering of for Streptomycetes for secondary metabolites production, Biotechnol. J. 13: 1700465.Google Scholar
  25. 25.
    Kieser, T, M. J. Bibb, M. J. Buttner, K. F. Chater, and D. A. Hopwood (2000) Practical Streptomyces genetics. John Innes Foundation, Norwich, UK.Google Scholar
  26. 26.
    Cheng, J., A. A. Guffanti, and T. A. Krulwich (1994) The chromosomal tetracycline resistance locus of Bacillus subtilis encodes a Na+/H+ antiporter that is physiologically important at elevated pH. J. Biol. Chem. 269: 27365–27371.Google Scholar
  27. 27.
    Lu, W, N. Roongsawang, and T. Mahmud (2011) Biosynthetic studies and genetic engineering of pactamycin analogs with improved selectivity toward material parasites. Chem. Biol. 18: 425–431.CrossRefGoogle Scholar
  28. 28.
    Combes, P., R. Till, S. Bee, and M. C. M. Smith (2002) The Streptomyces genome contains multiple pseudo-a#5 sites for the FC31-encoded site-specific recombination system. J. Bacteriol. 184: 5746–5752.CrossRefGoogle Scholar
  29. 29.
    Yan, J., D. N. Pham, D. K. Kang, S. B. Kim, and C.-J. Kim (2016) Production of aminolevulinic acid by recombinant Escherichia coli co-expressing hemA and otsBA using crude glycerol as carbon source. Microbiol. Biotechnol. Lett. 44: 341–348.CrossRefGoogle Scholar
  30. 30.
    Choi, S.-S., W.-J. Chi, J. H. Lee, S.-S. Kang, B. C. Jeong, and S. K. Hong (2001) Overexpression of the sprD gene encoding Streptomyces griseus protease D stimulates actinorhodin production in Streptomyces lividans. J. Microbiol. 39: 305–313.Google Scholar
  31. 31.
    Willey, J. M., L. M. Sherwood, and C. J. Woolverton (2007) Prescott, Harley and Klein’s Microbiology. 7th ed.,. 192–245. McGraw-Hill Higher Education, NY, USA.Google Scholar
  32. 32.
    Romero-Rodriguez, A., D. Rocha, B. Ruiz-Villafan, S. Guzman-Trampe, N. Maldonado-Carmona, M. Vazquez-Hernandez, A. Zelarayan, R. Rodriguez-Sanoja, and S. Sanchez (2017) Carbon catabolite regulation in Streptomyces: new insights and lessons learned. World J. Microbiol. Biotechnol. 33: 162.CrossRefGoogle Scholar
  33. 33.
    Ser, H.-L., J. W.-F. Law, N. Chaiyakunapruk, S. A. Jacob, U. D. Palanisamy, K.-G. Chan, B.-H. Goh, and L.-H. Lee (2016) Fermentation conditions that affect clavulanic acid production in Streptomyces clavuligerus: A systematic review. Front. Microbiol. 7: 522.Google Scholar
  34. 34.
    Jonsbu, E., M. Mcintyre, and J. Nielsen (2002) The influence of carbon sources and morphology on nystatin production by Streptomyces noursei. J. Biotechnol. 95: 133–144.CrossRefGoogle Scholar
  35. 35.
    Liu, X. X., L. Wang, Y. J. Wang, and L. L. Cai (2010) D-glucose enhanced 5- aminolevulinic acid production in recombinant Escherichia coli culture. Appl. Biochem. Biotechnol. 160: 822–830.CrossRefGoogle Scholar
  36. 36.
    Kang, Z., J. Zhang, J. Zhou, Q. Qi, G. Du, and J. Chen (2012) Recent advances in microbial production of d-aminolevulinic acid and vitamin B12. Biotechnol. Adv. 30: 1533–1542.CrossRefGoogle Scholar
  37. 37.
    Fang, H., J. Kang, and D. Zhang (2017) Microbial production of vitamin B12: a review and future perspectives. Microb. Cell Fact. 16: 15.CrossRefGoogle Scholar
  38. 38.
    Beg, Q. K., B. Bhushan, M. Kapoor, and G. S. Hoondal (2000) Effect of amino acids on production of xylanase and pectinase from Streptomyces sp. QG-11-3. World J. Microb. Biot. 16: 211–213.CrossRefGoogle Scholar
  39. 39.
    Wattanachaisareekul, S., A. Tachaleat, J. Punya, R. Haritakun, C. Boonlarppradab, and S. C. Cheevadhanarak (2014) Assessing medium constituents for optimal heterologous production of anhydromevalonolactone in recombinant Aspergillus oryzae. AMB Express. 4: 52.CrossRefGoogle Scholar
  40. 40.
    Liu, S.-R, Q.-P. Wu, J.-M. Zhang, and S.-P. Mo (2015) Efficient production of e-poly-L-lysine by Streptomyces ahygroscopicus using one-stage pH control fed-batch fermentation coupled with nutrient feeding. J. Microbiol. Biotechnol. 25: 358–365.CrossRefGoogle Scholar
  41. 41.
    Srivastava, A., V. Singh, S. Haque, S. Pandey, M. Mishra, A. Jawed, P. K. Shukla, P. K. Singh, C. K. M. Tripathi (2018) Response surface methodology-genetic algorithm based medium optimization, purification, and characterization of cholesterol oxidase from Streptomyces rimosus. Sci. Rep. 8: 10913.CrossRefGoogle Scholar
  42. 42.
    Werf, M. J. and J. G. Zeikus (1996). 5-Aminolevulinate production by Escherichia coli containing the Rhodobacter sphaeroides hemA gene. Appl. Environ. Microb. 62: 3560–3566.Google Scholar
  43. 43.
    Lee, D.-H., W.-J. Jim, J.-W. Yoon, H.-Y. Cho, and B.-S. Hong (2004) Process strategy to enhance the production of 5-aminolevulinic acid with recombinant E. coli. J. Microbiol. Biotechnol. 14: 1310–1317.Google Scholar
  44. 44.
    Hishinuma, F., K. Izaki, and H. Takahashi (1969) Effects of glycine and D-amino acids on growth of various microorganisms, Agr. Biol. Chem. 33: 1577–1586.Google Scholar
  45. 45.
    Hammes, W, K. H. Schleifer, and O. Kandler (1973) Mode of action of glycine on the biosynthesis of peptidoglycan. J. Bacteriol. 116: 1029–1053.Google Scholar
  46. 46.
    Wamecke, T. and R. T. Gill (2005) Organic acid toxicity, tolerance, and production in Escherichia coli biorefining applications. Microb. Cell Fact. 4: 25.CrossRefGoogle Scholar
  47. 47.
    Li, Q., D. Wang, Y. Wu, M. Yang, W. Li, J. Xing, and Z. Su (2010) Kinetic evaluation of products inhibition to succinic acid producers Escherichia coli NZN111, AFP111, BL21, and Actinobacillus succinogenes 130ZT. J. Microbiol. 48: 290–296.CrossRefGoogle Scholar
  48. 48.
    Yu, X., H. Jin, X. Cheng, Q. Wang, and Q. Qi (2016) Transcriptomic analysis for elucidating the physiological effects of 5-aminolevulinic acid accumulation on Corynebacterium glutamicum. Microbial. Res. 192: 292–299.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer 2019

Authors and Affiliations

  1. 1.Department of Chemical Engineering and ERIGyeongsang National UniversityJinjuKorea

Personalised recommendations