Advertisement

Biotechnology and Bioprocess Engineering

, Volume 24, Issue 2, pp 337–342 | Cite as

Characterization of a Photosynthesis-based Bioelectrochemical Film Fabricated with a Carbon Nanotube Hydrogel

  • Sunkak You
  • Young Seok Song
  • Seoung Jai BaiEmail author
Research Paper

Abstract

Microbial photo-bioelectrochemical cells (MPCs) generate energy through the photosynthetic process of microorganisms. However, all MPCs developed to date require oxidation-reduction mediators to transport electrons from the photosynthetic cells to the electrodes, due to which the power conversion efficiencies of such MPCs are usually low. In this study, we developed a method to increase the power conversion efficiency of MPCs by immobilizing Chlorella cells with multiwall carbon nanotubes (MWCNTs) using a UV-cured polyethylene glycol diacrylate (PEG-DA) hydrogel film within a microfluidic chamber. We report that the photosynthetic current obtained in our setup is ∼3-fold higher than that in normal Chlorella cells. Chronoamperometric measurements of hydrogel films with different ratios of MWCNTs and Chlorella indicate that more current is produced at higher MWCNT concentrations. Scanning electron micrographs were used to visualize immobilized MWCNTs and Chlorella cells, and energy dispersive spectrometry was used to quantify the carbon content of the hydrogel film. Impedance measurements also indicated that the increased current was due to improved harvesting of photosynthetic energy. The findings of this study would provide novel insights to design systems that use natural renewable energy sources for the production of electricity.

Keywords

electrochemistry measurement hydrogel film microbial photo-bioelectrochemical cells (MPCs) micro-fluidic chamber multiwall carbon nanotube (MWCNT) photosynthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

The present research was conducted by the research fund of Dankook University in 2018.

References

  1. 1.
    Wraight, C. A. and R. K. Clayton (1974) The absolute quantum efficiency of bacteriochlorophyll photooxidation in reaction centres of Rhodopseudomonas spheroides. Biochim. Biophys. Acta Bioenerg. 333: 246–260.CrossRefGoogle Scholar
  2. 2.
    Ha, J. G., Y. S. Song, S. Jung, S. Jang, Y. K. Kim, S. J. Bai, J.-H. Park, and S. K. Lee (2017) Novel microbial photobio-electrochemical cell using an invasive ultramicroelectrode array and a microfluidic chamber. Biotechnol. Lett. 39: 849–855.CrossRefGoogle Scholar
  3. 3.
    Yehezkeli, O., R. Tel-Vered, J. Wasserman, A. Trifonov, D. Michaeli, R. Nechushtai, and I. Willner (2012) Integrated photosystem II-based photo-bioelectrochemical cells. Nat. Commun. 3: 742–749.CrossRefGoogle Scholar
  4. 4.
    Tsujimura, S., A. Wadano, K. Kano, and T. Ikeda (2001) Photosynthetic bioelectrochemical cell utilizing cyanobacteria and water-generating oxidase. Enzyme Microb. Technol. 29: 225–231.CrossRefGoogle Scholar
  5. 5.
    Kim, J. H. and S. J. Bai (2014) Characterization of a photo-synthetic microbial solar cell with a membrane electrode assembly. J. Korean Phys. Soc. 65: 98–102.CrossRefGoogle Scholar
  6. 6.
    Kim, M. J., S. J. Bai, J. R. Yoon, and Y. S. Song (2019) Anomalous power enhancement of biophotovoltaic cell. J. Power Sources 412: 301–310.CrossRefGoogle Scholar
  7. 7.
    Yang, Y., G. Sun, and M. Xu (2011) Microbial fuel cells come of age. J. Chem. Technol. Biotechnol. 86: 625–632.CrossRefGoogle Scholar
  8. 8.
    Voloshin, R. A., V. D. Kreslavski, S. K. Zharmukhamedov, V. S. Bedbenov, S. Ramakrishna, and S. I. Allakhverdiev (2015) Photoelectrochemical cells based on photosynthetic systems: a review. Biofuel Res. J. 2: 227–235.CrossRefGoogle Scholar
  9. 9.
    Ivanov, I., T. Vidaković-Koch, and K. Sundmacher (2010) Recent advances in enzymatic fuel cells: experiments and modeling. Energies 3: 803–846.CrossRefGoogle Scholar
  10. 10.
    Bond, D. R. and D. R. Lovley (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 69: 1548–1555.CrossRefGoogle Scholar
  11. 11.
    Logan, B. E. (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol. 7: 375–381.CrossRefGoogle Scholar
  12. 12.
    Xie, X. H., E. L. Li, and Z. K. Tang (2011) Mediator toxicity and dual effect of glucose on the lifespan for current generation by Cyanobacterium Synechocystis PCC 6714 based photoelectro-chemical cells. J. Chem. Technol. Biotechnol. 86: 109–114.CrossRefGoogle Scholar
  13. 13.
    Barhoumi, L. and D. Dewez (2013) Toxicity of superparamagnetic iron oxide nanoparticles on green alga Chlorella vulgaris. BioMed. Res. Intl. 2013: 647974.CrossRefGoogle Scholar
  14. 14.
    Kim, L. H., Y. J. Kim, H. Hong, D. Yang, M. Han, G. Yoo, H. W. Song, Y. Chae, J.-C. Pyun, A. R. Grossman, and W. Ryu (2016) Patterned nanowire electrode array for direct extraction of photosynthetic electrons from multiple living algal cells. Adv. Funct. Mater. 26: 7679–7689.CrossRefGoogle Scholar
  15. 15.
    Bai, S. J., T. Fabian, F. B. Prinz, and R. J. Fasching (2008) Nanoscale probe system for cell-organelle analysis. Sens. Actuators B Chem. 130: 249–257.CrossRefGoogle Scholar
  16. 16.
    Park, J. H., Y. S. Song, J. G. Ha, Y. K. Kim, S. K. Lee, and S. J. Bai (2013) Electrochemical sensing of high density photosynthetic cells using a microfluidic chip. Sens. Actuators. B Chem. 188: 1300–1305.CrossRefGoogle Scholar
  17. 17.
    You, S. G. and S. J. Bai (2017) Long-term viability of photosynthetic cells stacked in a hydrogel film within a polydimethylsiloxane microfluidic device. Biotechnol. Bioprocess Eng. 22: 474–480.CrossRefGoogle Scholar
  18. 18.
    Giraldo, J. P., M. P. Landry, S. M. Faltermeier, T. P. McNicholas, N. M. Iverson, A. A. Boghossian, N. F. Reuel, A. J. Hilmer, F. Sen, J. A. Brew, and M. S. Strano (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat. Mater. 13: 400–408.CrossRefGoogle Scholar
  19. 19.
    Liu, X. W., Y. X. Huang, X. F. Sun, G. P. Sheng, F. Zhao, S. G. Wang, and H. Q. Yu (2014) Conductive carbon nanotube hydrogel as a bioanode for enhanced microbial electrocatalysis. ACS Appl. Mater. Interfaces 6: 8158–8164.CrossRefGoogle Scholar
  20. 20.
    Lee, H. J., S. J. Bai, and Y. S. Song (2017) Microfluidic electrochemical impedance spectroscopy of carbon composite nanofluids. Sci. Rep. 7: 722–732.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringDankook UniversityYonginKorea
  2. 2.Department of Fiber System EngineeringDankook UniversityYonginKorea

Personalised recommendations