Advertisement

Biotechnology and Bioprocess Engineering

, Volume 23, Issue 6, pp 704–709 | Cite as

Resistance and Proteomic Response of Microalgae to Ionizing Irradiation

  • Eun-Jeong Park
  • Jong-il ChoiEmail author
Research Paper
  • 7 Downloads

Abstract

Microalgae have been drawing much attention as a platform for food supplements and biofuel production. Advance molecular tools are not available for manipulating microalgae, and therefore, methods for strain improvement mostly depend on random mutation. Radiation is frequently used mutagen in plant as well as microalgae breeding methods. In this study, the resistance of 7 microalgae species to ionizing irradiation was measured. To monitor the growth of microalgae, optical density and staining methods were used. Based on the D10 values, the dose required to reduce one log cycle of the cell population, Chlorella protothecoides, Zygnema circumcarinatum, and Spirogyra varians were shown to be highly resistant to ionizing radiation. The changes in protein expression levels in S. varians were further investigated. Using 2-dimensional electrophoresis and protein identification, it was shown that some proteins involved in energy and glyceride metabolisms were up-regulated. These results provide fundamental insights into metabolic changes that occur in a microalga species upon exposure to ionizing irradiation.

Keywords

ionizing irradiation microalgae proteome resistance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dang, N. M. and K. Lee (2018) Utilization of organic liquid fertilizer in microalgae cultivation for biodiesel production. Biotechnol. Bioproc. Eng. 23: 405–414.CrossRefGoogle Scholar
  2. 2.
    Hong, S. J., Y. S. Park, M. A. Han, Z. H, Kim, B. K. Cho, H. Lee, H. K. Choi, and C. G. Lee (2017) Enhanced production of fatty acids in three strains of microalgae using a combination of nitrogen starvation and chemical inhibitors of carbohydrate synthesis. Biotechnol. Bioproc. Eng. 22: 60–67.CrossRefGoogle Scholar
  3. 3.
    Ahloowalia, B. S. and M. Maluszynski (2001) Induced mutations–A new paradigm in plant breeding. Euphytica 118: 167–173.CrossRefGoogle Scholar
  4. 4.
    Holzinger. A. and C. Lütz (2006) Algae and UV irradiation: Effects on ultrastructure and related metabolic functions. Micron 37: 190–207.CrossRefGoogle Scholar
  5. 5.
    Rastogi R. P., R. P. Sinha, S. H. Moh, T. K. Lee, S. Kottuparambil, Y. J. Kim, J. S. Rhee, E. M. Choi, M. T. Brown, D. P. Häder, and T. Han (2014) Ultraviolet radiation and cyanobacteria. J. Photoch. Photobio. B 141:154–69.CrossRefGoogle Scholar
  6. 6.
    Garcia, M. M., B. W. Brooks, R. B. Stewart, W. Dion, J. R. Trudel, and T. Ouwerkerk (1987) Evaluation of gamma radiation levels for reducing pathogenic bacteria and fungi in animal sewage and laboratory effluents. Can. J. Vet. Res. 51: 285–289.Google Scholar
  7. 7.
    Berberoglu, H., P. S. Gomez, and L. Pilon (2009) Radiation characteristics of Botryococcus braunii, Chlorococcum littorale, and Chlorella sp. Used for CO2 fixation and biofuel production. J. Quant. Spectrosc. Ra. 110: 1879–1893.CrossRefGoogle Scholar
  8. 8.
    Rotman, B. and B.W. Papermaster (1996) Membrane properties of living mammalian cells as studied by enzymatic hydrolysis of fluorogenic esters. P. Natl. Acad. Sci. USA 55: 134–141.CrossRefGoogle Scholar
  9. 9.
    Choi, J., M. Yoon, S. Lim, G. H. Kim, and H. Park (2015) Effect of gamma irradiation on physiological and proteomic changes of Arctic Zygnema sp. (Chlorophyta, Zygnematales). Phycologia 54: 333–341.CrossRefGoogle Scholar
  10. 10.
    Yoon, M., J. Choi, G. H. Kim, D. H. Kim, and D. H. Park (2013) Proteomic analysis of Spirogyra varians mutant with high starch content and growth rate induced by gamma irradiation. Bioproc. Biosyst. Eng. 36: 757–763.CrossRefGoogle Scholar
  11. 11.
    Joe, M. H., J. Y. Kim, S. Lim, D. H. Kim, S. Bai S., H. Park, S. G. Lee, S. J. Han, and J. Choi (2015) Microalgal lipid production using the hydrolysates of rice straw pretreated with gamma irradiation and alkali solution. Biotechnol. Biofuels 8: 125.CrossRefGoogle Scholar
  12. 12.
    Choi, J., M. Yoon, M. Joe, H. Park, S. G. Lee, S. J. Han, and P. C. Lee (2014) Development of microalga Scenedesmus dimorphus mutant with higher lipid content by radiation breeding. Bioproc. Biosyst. Eng. 37: 2437–2444.CrossRefGoogle Scholar
  13. 13.
    Baek, J., J. Choi, H. Park, S. Lim, and S. J. Park (2016) Isolation and proteomic analysis of a Chlamydomonas reinhardtii mutant with enhanced lipid production by the gamma irradiation method. J. Microbiol. Biotechnol. 26: 2076–2085.CrossRefGoogle Scholar
  14. 14.
    Wu, H., J. V. Volponi, A. E. Oliver, A. N. Parikh, B. A. Simmons, and S. Singh (2011) P. Natl. Acad. Sci. USA 108: 3809–3814.CrossRefGoogle Scholar
  15. 15.
    Fischer, M. and R. G. Sawers (2013) A universally applicable and rapid method for measuring the growth of streptomyces and other filamentous microorganisms by methylene blue adsorptiondesorption. Appl. Environ. Microb. 79: 4499–4502.CrossRefGoogle Scholar
  16. 16.
    Rotman, B. and B. W. Papermaster (1966) Membrane properties of living mammalian cells as studied by enzymatic hydrolysis of fluorogenic esters. P. Natl. Acad. Sci. USA 55: 134–141.CrossRefGoogle Scholar
  17. 17.
    Herburger, H. and A. Holzinger (2015) Localization and quantification of callose in the streptophyte green algae Zygnema and Klebsormidium: Correlation with desiccation tolerance. Plant and Cell Physiology 56: 2259–2270.Google Scholar
  18. 18.
    Germ, M., I. Kreft, and A. Gaberscik (2009) UV–B radiation and selenium affected energy availability in green alga Zygnema. Biologia 64: 676–679.CrossRefGoogle Scholar
  19. 19.
    Huss, V. A., C. Ciniglia, P. Cennamo, S. Cozzolino, G. Pinto, and A. Pollio (2002) Phylogenetic relationships and taxonomic position of Chlorella–like isolates from low pH environments (pH < 3.0). BMC Evol. Biol. 2:13.CrossRefGoogle Scholar
  20. 20.
    Slade, D. and M. Radman (2011) Oxidative Stress Resistance in Deinococcus radiodurans. Microbiol. Mol. Biol. R. 75: 133–191.CrossRefGoogle Scholar
  21. 21.
    Singh H. (2018) Desiccation and radiation stress tolerance in cyanobacteria. J. Basic Microb. 58: 813–826.CrossRefGoogle Scholar
  22. 22.
    Yoon, M., H. Y. Yang, S. S. Lee, D. H. Kim, G. H. Kim, and J. Choi (2013) Characterization of gamma radiation inducible thioredoxin h from Spirogyra varians. Enzyme Microb. Tech. 53: 136–142.CrossRefGoogle Scholar
  23. 23.
    Ciereszko, I., H. Johansson, V. Hurry, and L. A. Kleczkowski (2001) Phosphate status affects the gene expression, protein content and enzymatic activity of UDP–glucose pyrophosphorylase in wild–type and pho mutants of Arabidopsis. Planta 212: 598–605.CrossRefGoogle Scholar
  24. 24.
    Wang, S. B., F. Chen, and M. Sommerfeld (2004) Proteomic analysis of molecular response to oxidative stress by the green alga Haematococcus pluvialis (Chlorophyceae). Planta 220: 17–29.CrossRefGoogle Scholar
  25. 25.
    Hasunuma, K., N. Yabe, Y. Yoshida, Y. Ogura, and T. Hamada (2003) Putative functions of nucleoside diphosphate kinase in plants and fungi. J. Bioenerg. Biomembr. 35:57–65.CrossRefGoogle Scholar
  26. 26.
    Wei, S. J., C. S. Trempus, R. C. Ali, L. A. Hansen, and R. W. Tennant (2004) 12–O–tetradecanoylphorbol–13–acetate and UV radiationinduced nucleoside diphosphate protein kinase B mediates neoplastic transformation of epidermal cells. J. Biol. Chem. 279: 5993–6004.Google Scholar
  27. 27.
    Yasunobu, O., Y. Yoshida, N. Yabe, and K. Hasunuma (2001) A point mutation in nucleoside diphosphate kinase results in a deficient light response for perithecial polarity in Neurospora crassa. J. Biol. Chem. 276: 21228–21234.CrossRefGoogle Scholar
  28. 28.
    Blomberg A. and L. Adler (1989) Roles of glycerol and glycerol–3–phosphate dehydrogenase (NAD+) in acquired osmotolerance of Saccharomyces cerevisiae. J. Bacteriol. 171: 1087–1092.CrossRefGoogle Scholar
  29. 29.
    Wu, L., J. Wu, Y. Liu, X. Gong, J. Xu, D. Lin, and Y. Dong (2016) The rice pentatricopeptide repeat gene TCD10 is needed for chloroplast development under cold stress. Rice 9: 67.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Seaweed Research CenterNational Institute of Fisheries ScienceHaenamKorea
  2. 2.Department of Biotechnology and BioengineeringChonnam National UniversityGwangjuKorea

Personalised recommendations