Biotechnology and Bioprocess Engineering

, Volume 24, Issue 2, pp 318–325 | Cite as

Affinity Peptide-guided Plasmonic Biosensor for Detection of Noroviral Protein and Human Norovirus

  • Nam Su Heo
  • Seo Yeong Oh
  • Myung Yi Ryu
  • Seung Hoon Baek
  • Tae Jung ParkEmail author
  • Changsun Choi
  • Yun Suk HuhEmail author
  • Jong Pil ParkEmail author
Research Paper


In this study, we developed an affinity peptide-guided plasmonic biosensor that is capable of detection for noroviral capsid proteins and human norovirus. Construction of plasmonic biosensor was achieved by immobilization of affinity peptides (named norovirus binding peptides) on the localized surface plasmonic sensor (LSPR) layer for detection of noroviral capsid proteins and human norovirus. The performance of the plasmonic biosensor in detection of their targets was monitored using LSPR techniques. This specific interaction is proportional to the absorbance of LSPR signals. The lowest detection value for noroviral capsid protein was 0.1 ng/mL in the presence of complex tissue culture media (MEM and FBS), and limit of detection (LOD) for human norovirus was found to be 9.9 copies/mL by the 3-σ rule. Interestingly, no dynamic binding response with norovirus binding peptides as affinity reagent was observed against rotavirus, suggesting that norovirus binding peptides have high selectivity for human norovirus. Thus, norovirus binding peptide-guided plasmonic biosensor could be used for the detection of norovirus-related foodborne pathogens.


norovirus affinity peptide sensitivity plasmonic biosensor limit of detection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This study of JPP was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education, Science and Technology (NRF-2011-0010312) and National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIP) (NRF-2014R1A2A2A01005621, NRF-2017R1A2A2A05001037). Moreover, this research of JPP was also a part of the project titled “Development of portable impedance detection system for food poisoning virus in sea foods”, which was funded by the Ministry of Oceans and Fisheries, Korea. YS Huh gratefully acknowledges financial support from the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT CNRF-2018R1A2B2006094). This study of TJP was carried out with the support of “Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ01280901)” Rural Development Administration, Republic of Korea.

Supplementary material

12257_2018_410_MOESM1_ESM.pdf (2.5 mb)
Supplementary material, approximately 2.2 MB.


  1. 1.
    Shin, Y. B., J. M. Lee, M. R. Park, M. G. Kim, B. H. Chung, H. B. Pyo, and S. Maeng (2007) Analysis of recombinant protein expression using localized surface plasmon resonance. Biosens. Bioelectron. 22: 2301–2307.CrossRefGoogle Scholar
  2. 2.
    Sepulveda, B., P. C. Angelome, L. M. Lechuga, and L. M. Liz-Marzan (2009) LSPR-based nanobiosensors, Nano Today 4: 244–251.CrossRefGoogle Scholar
  3. 3.
    Zhao, X. M., M.K. Wong, S. K. Chiu, and S. W. Pang (2015) Effects of three-layered nanodisk size on cell detection sensitivity of plasmon resonance biosensors. Biosens. Bioelectron. 74: 799–807.CrossRefGoogle Scholar
  4. 4.
    Kim, H. M., S. M. Jin, S. K. Lee, M. G. Kim, and Y. B. Shin (2009) Detection of biomolecular binding through enhancement of localized surface plasmon resonance (LSPR) by gold nanoparticles. Sensors 9: 2334–2344.CrossRefGoogle Scholar
  5. 5.
    Willets, K. A. and R. P. Van Duyne (2007) Localized surface plasmon resonance spectroscopy and sensing. Ann. Rev. Phys. Chem. 58: 267–297.CrossRefGoogle Scholar
  6. 6.
    da Silva, C. T. P., J. P. Monteiro, E. Radovanovic, and E. M. Girotto (2014) Unprecedented high plasmonic sensitivity of substrates based on gold nanoparticles. Sens. Actuat. B-Chem. 191: 152–157.CrossRefGoogle Scholar
  7. 7.
    Zhu, J. and X. C. Deng (2011) Improve the refractive index sensitivity of gold nanotube by reducing the restoring force of localized surface plasmon resonance. Sens. Actuat. B-Chem. 155: 843–847.CrossRefGoogle Scholar
  8. 8.
    Zheng, D. P., T. Ando, R. L. Fankhauser, R. S. Beard, R. I. Glass, and S. S. Monroe (2006) Norovirus classification and proposed strain nomenclature. Virology 346: 312–323.CrossRefGoogle Scholar
  9. 9.
    Hwang, H. J., M. Y. Ryu, and J. P. Park (2015) Identification of high affinity peptides for capturing norovirus capsid proteins. RSC Adv. 5: 55300–55302.CrossRefGoogle Scholar
  10. 10.
    Zhao, Z., J. Zhang, M. L. Xu, Z. P. Liu, H. Wang, M. Liu, Y. Y. Yu, L. Sun, H. Zhang, and H. Y Wu (2016) A rapidly new-typed detection of norovirus based on F0F1-ATPase molecular motor biosensor. Biotechnol. Bioprocess Eng. 21: 128–133.CrossRefGoogle Scholar
  11. 11.
    Sadir, S., M. P. Prabhakaran, D. H. B. Wicaksono, S. Ramakrishna (2014) Fiber based enzyme-linked immunosorbent assay for C-reactive protein. Sens. Actuat. B-Chem. 205: 50–60.CrossRefGoogle Scholar
  12. 12.
    Kirby, A., R. Q. Gurgel, W. Dove, S. C. F. VieiraCunliffe, and L. E. Cuevas (2010) An evaluation of the RIDASCREEN and IDEIA enzyme immunoassays and the RIDAQUICK immunochromatographic test for the detection of norovirus in faecal specimens. J. Clin. Virol. 49: 254–257.CrossRefGoogle Scholar
  13. 13.
    Castriciano, S., K. Luinstra, A. Perrich, M. Smieja, C. Lee, D. Jang, and E. M. Chernesky (2007) Comparison of the RIDASCREEN norovirus enzyme immunoassay to IDEIA NLV GI/GII by testing stools also assayed by RT-PCR and electron microscopy. J. Virol. Methods 141: 216–219.CrossRefGoogle Scholar
  14. 14.
    Bruins, M. J., M. Wolfhagen, J. Schirm, and G. Ruijs (2010) Evaluation of a rapid immunochromatographic test for the detection of norovirus in stool samples. Eur. J. Clin. Microbiol. Infect. Dis. 29: 741–743.CrossRefGoogle Scholar
  15. 15.
    Chiu, N. F., C. T. Kuo, T. L. Lin, C. C. Chang, and C. Y. Chen (2017) Ultra-high sensitivity of the non-immunological affinity of graphene oxide-peptide-based surface plasmon resonance biosensors to detect human chorionic gonadotropin. Biosens. Bioelectron. 94: 351–357.CrossRefGoogle Scholar
  16. 16.
    Gao, L., Q. Li, R. Li, L. Yan, T. Zhou, K. Chen, and H. Shi (2015) Highly sensitive detection for proteins using graphene oxide-aptamer based sensors. Nanoscale 7: 10903–10907.CrossRefGoogle Scholar
  17. 17.
    Lim, S. K., P. Chen, F. L. Lee, S. Moochhala, and B. Liedberg (2015) Peptide-assembled graphene oxide as a fluorescent turn-on sensor for lipopolysaccharide (endotoxin) detection. Anal. Chem. 87: 9408–9412.CrossRefGoogle Scholar
  18. 18.
    Settu, K., J. T. Liu, C. J. Chen, and J. Z. Tsai (2017) Development of carbon-graphene-based aptamer biosensor for EN2 protein detection. Anal. Biochem. 534: 99–107.CrossRefGoogle Scholar
  19. 19.
    Xie, L., X. Yan, and Y. Du (2014) An aptamer based wall-less LSPR array chip for label-free and high throughput detection of biomolecules. Biosens. Bioelectron. 53: 58–64.CrossRefGoogle Scholar
  20. 20.
    Hwang, H. J., M. Y. Ryu, C. Y. Park, J. Ahn, H. G. Park, C. Choi, S. D. Ha, T. J. Park, and J. P. Park (2017) High sensitive and selective electrochemical biosensor: Label-free detection of human norovirus using affinity peptide as molecular binder. Biosens. Bioelectron. 87: 164–170.CrossRefGoogle Scholar
  21. 21.
    Bastus, N. G., J. Comenge, and V. Puntes (2011) Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus ostwald ripening. Langmuir 27: 11098–11105.CrossRefGoogle Scholar
  22. 22.
    Yang, J., B. Wang, Y. You, W. J. Chang, K. Tang, Y. C. Wang, W. Wang, F. Ding, and S. Gunasekaran (2017) Probing the modulated formation of gold nanoparticles-beta-lactoglobulin corona complexes and their applications. Nanoscale 9: 17758–17769.CrossRefGoogle Scholar
  23. 23.
    Shrivastava, A. and V. B. Gupta (2011) Methods for the determination of limit of detection and limit of quantification of the analytical methods. Chron. Young Scientists. 2: 21–25.CrossRefGoogle Scholar
  24. 24.
    Costantini, V., L. Grenz, A. Fritzinger, D. Lewis, C. Biggs, A. Hale, and J. Vinje (2010) Diagnostic accuracy and analytical sensitivity of IDEIA norovirus assay for routine screening of human noroviruss. J. Clin. Microbiol. 48: 2770–2778.CrossRefGoogle Scholar
  25. 25.
    Pombubpa, K. and L. Kittigul (2012) Assessment of a rapid immunochromatographic test for the diagnosis of norovirus gastroenteritis. Eur. J. Clin. Microbiol. Infect. Dis. 31: 2379–2383.CrossRefGoogle Scholar
  26. 26.
    Hagstrom, A. E. V., G. Garvey, A. S. Paterson, S. Dhamane, M. Adhikari, M. K. Estes, S. U. Trych, K. Kourentzi, R. Atmar, and R. C. Willson (2015) Sensitive detection of norovirus using phage nanoparticle reporters in lateral-flow assay. PLoS One 10: e0126571. doi: CrossRefGoogle Scholar
  27. 27.
    Li, Y., C. Zhang, and D. Xing (2011) Fast identification of foodborne pathogenic viruses using continuous-flow reverse transcription-PCR with fluorescence detection. Microfluid. Nanofluid. 10: 367–380.CrossRefGoogle Scholar
  28. 28.
    Shao, W., W. Zhu, Y. Wang, J. Lu, G. Jin, Y. Wang, and W. Su (2016) Rational design and molecular engineering of peptide aptamers to target human pancreatic trypsin in acute pancreatitis. Biotechnol. Bioprocess Eng. 21: 144–152.CrossRefGoogle Scholar
  29. 29.
    Wu, Y., J. Li, H. Yang, J. Seoung, H.-D. Lim, G.-J. Kim, and H.-J. Shin (2017) Targeted cowpea chlorotic mottle virus-based nanoparticles with tumor-homing peptide F3 for photothermal therapy. Biotechnol. Bioprocess Eng. 22: 700–708.CrossRefGoogle Scholar
  30. 30.
    Yoon, J.-Y., D.-H. Kim, S. Kim, D. Kim, G. Jo, M.-S. Shin, J. Yoo, H. K. Kang, M. S. Kim, Y.-J. Kim, N.-T. Lee, H. J. Hong, and Y.-W. Kim (2017) Generation of a monoclonal antibody that has reduced binding activity to VX-inactivated butyrylcholinesterase (BuChE) compared to BuChE by phage display. Biotechnol. Bioprocess Eng. 22: 114–119.CrossRefGoogle Scholar
  31. 31.
    Ju, M.-S., S.-W. Min, S. M. Lee, H. S. Kwon, J. C. Park, J. C. Lee, and S. T. Jung (2017) A synthetic library for rapid isolation of humanized single-domain antibodies. Biotechnol. Bioprocess Eng. 22: 239–247.CrossRefGoogle Scholar
  32. 32.
    Beier, R., C. Pahlke, P. Quenzel, A. Henseleit, E. Boschke, G Cuniberti, and D. Labudde. 2014. FEMS Microbiol. Lett. 351: 162–169.CrossRefGoogle Scholar
  33. 33.
    Hong, S. A., J. Kwon, D. Kim, and S. Yang. 2015. Biosens. Bioelectron. 64: 338–344.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer 2019

Authors and Affiliations

  1. 1.Department of Biological EngineeringInha UniversityIncheonKorea
  2. 2.Department of Pharmaceutical EngineeringDaegu Haany UniversityGyeongsanKorea
  3. 3.Department of Chemistry, Institute of Interdisciplinary Convergence Research, Research Institute of Halal Industrialization TechnologyChung-Ang UniversitySeoulKorea
  4. 4.Department of Food and Nutrition, School of Food Science and TechnologyChung-Ang UniversityAnsungKorea

Personalised recommendations