Advertisement

Biotechnology and Bioprocess Engineering

, Volume 24, Issue 1, pp 240–249 | Cite as

Fluorescence-based Quantification of Bioactive Keratin Peptides from Feathers for Optimizing Large-scale Anaerobic Fermentation and Purification

  • Hyeon-Su Jin
  • Seon Yeong Park
  • Ji-Yeon Kim
  • Jae-Eun Lee
  • Han-Seung Lee
  • Nam Joo Kang
  • Dong-Woo LeeEmail author
Research Paper
  • 2 Downloads

Abstract

The extremely thermophilic eubacterium Fervidobacterium islandicum AW-1 produces low molecular weight (LMW; < 1 kDa) keratin peptides (KPs) from poultry feathers at 70°C. However, detection and quantification of feather hydrolysate-derived peptides is needed for optimizing fermentation and down-stream processes. Herein, we developed a large-scale fermentation and purification of skin anti-aging LMW KPs from recalcitrant feathers using fluorescence-based quantification of N-terminal prolinecontaining KPs derivatized with 3,4-dihydroxybenzoic acid to yield fluorescent adducts. Fluorescent products were correlated with bioactive KP concentrations in keratin fractions and cosmetic formulations. Subsequent anaerobic fermentative keratinolysis and large-scale purification achieved 4.4 g/L LMW KPs from 8 g/L native feathers in a 5 L batch bioreactor, generating 0.8 g/L purified MMP-1 suppressive KPs (yield = 1.2%). This demonstrated the feasibility of industrial-scale anaerobic feather digestion and purification of LMW KPs to produce skin anti-aging peptides from keratin hydrolysates in a more environmentally sustainable manner.

Keywords

Fervidobacterium islandicum LMW keratin peptide anaerobic digestion large-scale purification skin anti-aging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhang, L. and T. J. Falla (2009) Cosmeceuticals and peptides. Clin. Dermatol. 27: 485–494.CrossRefGoogle Scholar
  2. 2.
    Ochiai, A., S. Tanaka, T. Tanaka, and M. Taniguchi (2016) Rice bran protein as a potent source of antimelanogenic peptides with tyrosinase inhibitory activity. J. Nat. Prod. 79: 2545–2551.CrossRefGoogle Scholar
  3. 3.
    Kume, A., M. Okochi, K. Shimizu, Y. Yoshida, and H. J. B. Honda (2016) Development of a tactical screening method to investigate the characteristics of functional peptides. Biotechnol. Bioprocess Eng. 21: 119–127.CrossRefGoogle Scholar
  4. 4.
    Shao, W., W. Zhu, Y. Wang, J. Lu, G. Jin, Y. Wang, and W. J. B. Su (2016) Rational design and molecular engineering of peptide aptamers to target human pancreatic trypsin in acute pancreatitis. Biotechnol. Bioprocess Eng. 21: 144–152.CrossRefGoogle Scholar
  5. 5.
    Lee, G., Y. Ko, M. Park, B. Kim, H. Hyun, and W. Lim (2017) Recombinant DNA cloning of the active region of the receptor activator of NF-κB ligand (RANKL) gene and its role in osteoclastogenesis. Biotechnol. Bioprocess Eng 22: 686–692.CrossRefGoogle Scholar
  6. 6.
    Do, B. H., S. Park, G. G. Kwon, M. T. Nguyen, H. J. Kang, J.-A. Song, J. Yoo, A. N. Nguyen, J. Jang, M. Jang, S. Lee, S. So, S. Sim, J. Jin, K. J. Lee, M. J. Osborn, and H. Choe (2017) Soluble expression and purification of bioactive interleukin 33 in E. coli. Biotechnol. Bioprocess Eng. 22: 256–264.CrossRefGoogle Scholar
  7. 7.
    Henninot, A., J. C. Collins, and J. M. Nuss (2018) The current state of peptide drug discovery: back to the future? J. Med. Chem. 61: 1382–1414.CrossRefGoogle Scholar
  8. 8.
    Chen, T., H. Hou, Y. Fan, S. Wang, Q. Chen, L. Si, and B. Li (2016) Protective effect of gelatin peptides from pacific cod skin against photoaging by inhibiting the expression of MMPs via MAPK signaling pathway. J. Photochem. Photobiol. B 165: 34–41.CrossRefGoogle Scholar
  9. 9.
    Kang, Y. A., J. I. Na, H. R. Choi, J. W. Choi, H. Y. Kang, and K. C. Park (2011) Novel anti-inflammatory peptides as cosmeceutical peptides. Peptides 32: 2134–2136.CrossRefGoogle Scholar
  10. 10.
    Schurink, M., W. J. van Berkel, H. J. Wichers, and C. G. Boeriu (2007) Novel peptides with tyrosinase inhibitory activity. Peptides 28: 485–495.CrossRefGoogle Scholar
  11. 11.
    Gosslau, A., S. Li, C. T. Ho, K. Y. Chen, and N. E. Rawson (2011) The importance of natural product characterization in studies of their anti-inflammatory activity. Mol. Nutr. Food Res. 55: 74–82.CrossRefGoogle Scholar
  12. 12.
    Jin, H. S., S. Y. Park, K. Kim, Y. J. Lee, G. W. Nam, N. J. Kang, and D. W. Lee (2017) Development of a keratinase activity assay using recombinant chicken feather keratin substrates. PLoS One 12: e0172712.Google Scholar
  13. 13.
    Pittayapruek, P., J. Meephansan, O. Prapapan, M. Komine, and M. Ohtsuki (2016) Role of matrix metalloproteinases in photoaging and photocarcinogenesis. Int. J. Mol. Sci. 17.CrossRefGoogle Scholar
  14. 14.
    Kahari, V. M. and U. Saarialho-Kere (1997) Matrix metalloproteinases in skin. Exp. Dermatol. 6: 199–213.CrossRefGoogle Scholar
  15. 15.
    Varani, J., R. L. Warner, M. Gharaee-Kermani, S. H. Phan, S. Kang, J. H. Chung, Z. Q. Wang, S. C. Datta, G. J. Fisher, and J. J. Voorhees (2000) Vitamin A antagonizes decreased cell growth and elevated collagen-degrading matrix metalloproteinases and stimulates collagen accumulation in naturally aged human skin. J. Invest. Dermatol. 114: 480–486.CrossRefGoogle Scholar
  16. 16.
    Ralf Paus, L., M. Berneburg, M. Trelles, B. Friguet, S. Ogden, M. Esrefoglu, G. Kaya, D. J. Goldberg, S. Mordon, R. G. Calderhead, C. E. M. Griffiths, J. H. Saurat, and D. M. Thappa (2008) How best to halt and/or revert UV-induced skin ageing: strategies, facts and fiction. Exp. Dermatol. 17: 228–229.CrossRefGoogle Scholar
  17. 17.
    Nam, G. W., D. W. Lee, H. S. Lee, N. J. Lee, B. C. Kim, E. A. Choe, J. K. Hwang, M. T. Suhartono, and Y. R. Pyun (2002) Native-feather degradation by Fervidobacterium islandicum AW-1, a newly isolated keratinase-producing thermophilic anaerobe. Arch. Microbiol. 178: 538–547.CrossRefGoogle Scholar
  18. 18.
    Lee, Y. J., H. Jeong, G. S. Park, Y. Kwak, S. J. Lee, S. J. Lee, M. K. Park, J. Y. Kim, H. K. Kang, J. H. Shin, and D. W. Lee (2015) Genome sequence of a native-feather degrading extremely thermophilic Eubacterium, Fervidobacterium islandicum AW-1. Stand. Genomic. Sci. 10: 71.CrossRefGoogle Scholar
  19. 19.
    Yeo, I., Y. J. Lee, K. Song, H. S. Jin, J. E. Lee, D. Kim, D. W. Lee, and N. J. Kang (2018) Low-molecular weight keratins with anti-skin aging activity produced by anaerobic digestion of poultry feathers with Fervidobacterium islandicum AW-1. J. Biotechnol. 271: 17–25.CrossRefGoogle Scholar
  20. 20.
    Friedrich, A. B. and G. Antranikian (1996) Keratin degradation by Fervidobacterium pennavorans, a novel thermophilic anaerobic species of the order Thermotogales. Appl. Environ. Microbiol. 62: 2875–2882.Google Scholar
  21. 21.
    Wolin, E. A., R. S. Wolfe, and M. J. Wolin (1964) Viologen dye inhibition of methane formation by Methanobacillus omelianskii. J. Bacteriol. 87: 993–998.Google Scholar
  22. 22.
    Balch, W. E., G. E. Fox, L. J. Magrum, C. R. Woese, and R. S. Wolfe (1979) Methanogens: reevaluation of a unique biological group. Microbiol. Rev. 43: 260–296.Google Scholar
  23. 23.
    Rosen, H. (1957) A modified ninhydrin colorimetric analysis for amino acids. Arch. Biochem. Biophys. 67: 10–15.CrossRefGoogle Scholar
  24. 24.
    Ellman, G. L., K. D. Courtney, V. Andres, Jr. and R. M. Feather-Stone (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7: 88–95.CrossRefGoogle Scholar
  25. 25.
    Andrews, G. L., B. L. Simons, J. B. Young, A. M. Hawkridge, and D. C. Muddiman (2011) Performance characteristics of a new hybrid quadrupole time-of-flight tandem mass spectrometer (TripleTOF 5600). Anal. Chem. 83: 5442–5446.CrossRefGoogle Scholar
  26. 26.
    Alagappan, G. and R. M. Cowan (2001) Biokinetic models for representing the complete inhibition of microbial activity at high substrate concentrations. Biotechnol. Bioeng. 75: 393–405.CrossRefGoogle Scholar
  27. 27.
    Andrews, J. F. (1968) A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol. Bioeng. 10: 707–723.CrossRefGoogle Scholar
  28. 28.
    Jin, H. S., K. Song, J. H. Baek, J. E. Lee, D. J. Kim, G. W. Nam, N. J. Kang, and D. W. Lee (2018) Identification of matrix metalloproteinase-1-suppressive peptides in feather keratin hydrolysate. J. Agric. Food Chem. 66: 12719–12729.CrossRefGoogle Scholar
  29. 29.
    Yasmin, H., M. S. Rahman, T. Shibata, T. Kabashima, and M.vKai (2014). A novel fluorometric method for the selective determination of Pro-Gly and Pro-Gly-Pro. Int. J. Pept. Res. Ther. 20: 441–446.Google Scholar
  30. 30.
    Gregg, K. and G. E. Rogers (1986) Feather keratin: Composition, structure and biogenesis, in Biology of the Integument: 2 Vertebrates (Bereiter-Hahn, J., Matoltsy, A.G. and Richards, K.S., eds), pp666–694, Springer Berlin Heidelberg, Berlin, Heidelberg.Google Scholar
  31. 31.
    Flick, E. W. (1995) Section VII-Lotions, in Cosmetic and Toiletry Formulations (Flick, E.W., ed), pp253–304, William Andrew Publishing, Oxford.Google Scholar
  32. 32.
    Flick, E. W. (1995) Section V-Creams, in Cosmetic and Toiletry Formulations (Flick, E.W., ed), pp109–187, William Andrew Publishing, Oxford.Google Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer 2019

Authors and Affiliations

  • Hyeon-Su Jin
    • 1
  • Seon Yeong Park
    • 2
  • Ji-Yeon Kim
    • 2
  • Jae-Eun Lee
    • 3
  • Han-Seung Lee
    • 4
  • Nam Joo Kang
    • 3
  • Dong-Woo Lee
    • 1
    Email author
  1. 1.Department of BiotechnologyYonsei UniversitySeoulKorea
  2. 2.School of Applied BiosciencesKyungpook National UniversityDaeguKorea
  3. 3.School of Food Science and BiotechnologyKyungpook National UniversityDaeguKorea
  4. 4.Major in Food BiotechnologySilla UniversityBusanKorea

Personalised recommendations