Biotechnology and Bioprocess Engineering

, Volume 24, Issue 1, pp 155–162 | Cite as

Crystal Structure of a Novel Type Isomerase of Enoyl-CoA Hydratase/Isomerase Family Protein from Cupriavidus necator H16

  • Hogyun Seo
  • Kyung-Jin KimEmail author
Research Paper


Although enoyl-CoA hydratase/isomerase superfamily proteins are functionally diverse and extremely abundant in microbial and higher organism’s genome, they still have been elusively annotated. The genome of Cupriavidus necator H16 contains at least 54 enoyl-CoA hydratase/isomerase superfamily proteins that might influence on polyhydroxyalkanoate synthesis, but most of them are uncharacterized. Among them, we first determined crystal structure of H16_B0756 at a 2.0 Å resolution. The protein exhibits unique amino acid sequences compared to the other isoforms with identity lower than 36%. The structure of H16_B0756 forms a trimeric architecture and showed canonical disk-shape. Interestingly, H16_B0756 has only one glutamate residue at the active site while other enoyl-CoA hydratases have two nucleophilic glutamate at the catalytic site. We found that the active site conformation of H16_B0756 is quite similar to that of 1,2-epoxyphenylacetyl-CoA isomerase (PaaG) rather than those of other enoyl-CoA hydratases. In addition to the structural comparison, gene neighborhoods analysis suggested that H16_B0756 might function in the ring compound degradation.


crotonase superfamily H16_B0756 Cupriavidus necator H16 ring compound degradation polyhydroxyalkanoate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mullernewen, G., U. Janssen, and W. Stoffel (1995) Enoyl-Coa Hydratase and Isomerase Form a Superfamily with a Common Active-Site Glutamate Residue. Eur. J. Biochem. 228: 68–73.CrossRefGoogle Scholar
  2. 2.
    Xiang, H., L. S. Luo, K. L. Taylor, and D. Dunaway-Mariano (1999) Interchange of catalytic activity within the 2-enoylcoenzyme a hydratase isomerase superfamily based on a common active site template. Biochemistry-Us. 38: 7638–7652.CrossRefGoogle Scholar
  3. 3.
    Chae, J. C., Y. Kim, Y. C. Kim, G. J. Zylstra, and C. K. Kim (2000) Genetic structure and functional implication of the fcb gene cluster for hydrolytic dechlorination of 4-chlorobenzoate from Pseudomonas sp DJ-12. Gene. 258: 109–116.CrossRefGoogle Scholar
  4. 4.
    Holden, H. M., M. M. Benning, T. Haller, and J. A. Gerlt (2001) The crotonase superfamily: Divergently related enzymes that catalyze different reactions involving acyl coenzyme A thioesters. Accounts Chem. Res. 34: 145–157.CrossRefGoogle Scholar
  5. 5.
    Mursula, A. M., D. M. F. van Aalten, J. K. Hiltunen, and R. K. Wierenga (2001) The crystal structure of Delta(3)-Delta(2)-enoyl-CoA isomerase. J. Mol. Biol. 309: 845–853.CrossRefGoogle Scholar
  6. 6.
    Bahnson, B. J., V. E. Anderson, and G. A. Petsko (2002) Structural mechanism of enoyl-CoA hydratase: Three atoms from a single water are added in either an E1cb stepwise or concerted fashion. Biochemistry-Us. 41: 2621–2629.CrossRefGoogle Scholar
  7. 7.
    Agnihotri, G., and H. W. Liu (2003) Enoyl-CoA hydratase: Reaction, mechanism, and inhibition. Bioorgan. Med. Chem. 11: 9–20.CrossRefGoogle Scholar
  8. 8.
    Partanen, S. T., D. K. Novikov, A. N. Popov, A. M. Mursula, J. K. Hiltunen, and R. K. Wierenga (2004) The 1.3 angstrom crystal structure of human mitochondrial Delta(3)-Delta(2)-enoyl-CoA isomerase shows a novel mode of binding for the fatty acyl group. J. Mol. Biol. 342: 1197–1208.CrossRefGoogle Scholar
  9. 9.
    Mursula, A. M., J. K. Hiltunen, and R. K. Wierenga (2004) Structural studies on Delta(3)-Delta(2)-enoyl-CoA isomerase: the variable mode of assembly of the trimeric disks of the crotonase superfamily. Febs. Lett. 557: 81–87.CrossRefGoogle Scholar
  10. 10.
    Hamed, R. B., E. T. Batchelar, I. J. Clifton, and C. J. Schofield (2008) Mechanisms and structures of crotonase superfamily enzymes-How nature controls enolate and oxyanion reactivity. Cell Mol. Life Sci. 65: 2507–2527.CrossRefGoogle Scholar
  11. 11.
    Geisbrecht, B. V., D. Zhu, K. Schulz, K. Nau, J. C. Morrell, M. Geraghty, H. Schulz, R. Erdmann, and S. J. Gould (1998) Molecular characterization of Saccharomyces cerevisiae Delta(3), Delta(2)-enoyl-CoA isomerase. J. Biol. Chem. 273: 33184–33191.CrossRefGoogle Scholar
  12. 12.
    Geisbrecht, B. V., D. Y. Zhang, H. Schulz, and S. J. Gould (1999) Characterization of PECI, a novel monofunctional Delta(3), Delta(2)-enoyl-CoA isomerase of mammalian peroxisomes. J. Biol. Chem. 274: 21797–21803.CrossRefGoogle Scholar
  13. 13.
    Choi, J. H., M. J. Seo, K. T. Lee, and D. K. Oh (2017) Biotransformation of Fatty Acid-rich Tree Oil Hydrolysates to Hydroxy Fatty Acid-rich Hydrolysates by Hydroxylases and their Feasibility as Biosurfactants. Biotechnol. Bioproc. E. 22: 709–716.CrossRefGoogle Scholar
  14. 14.
    Gescher, J., W. Eisenreich, J. Worth, A. Bacher, and G. Fuchs (2005) Aerobic benzoyl-CoA catabolic pathway in Azoarcus evansii: studies on the non-oxygenolytic ring cleavage enzyme. Mol. Microbiol. 56: 1586–1600.CrossRefGoogle Scholar
  15. 15.
    Gerratana, B., S. O. Arnett, A. Stapon, and C. A. Townsend (2004) Carboxymethylproline synthase from Pectobacterium carotorova: A multifaceted member of the Crotonase superfamily. Biochemistry-Us. 43: 15936–15945.CrossRefGoogle Scholar
  16. 16.
    Haller, T., T. Buckel, J. Retey, and J. A. Gerlt (2000) Discovering new enzymes and metabolic pathways: Conversion of succinate to propionate by Escherichia coli. Biochemistry-Us. 39: 4622–4629.CrossRefGoogle Scholar
  17. 17.
    Wong, B. J., and J. A. Gerlt (2004) Divergent function in the Crotonase superfamily: An anhydride intermediate in the reactions catalyzed by 3-hydroisobutyryl-CoA hydrolase (vol 125, pg 12076, 2003). J. Am. Chem. Soc. 126: 1921–1921.CrossRefGoogle Scholar
  18. 18.
    Do, K. H., H. M. Park, S. K. Kim, and H. S. Yun (2018) Production of cis-Vaccenic Acid-oriented Unsaturated Fatty Acid in Escherichia coli. Biotechnol. Bioproc. E. 23: 100–107.CrossRefGoogle Scholar
  19. 19.
    Truglio, J. J., K. Theis, Y. G. Feng, R. Gajda, C. Machutta, P. J. Tonge, and C. Kisker (2003) Crystal structure of Mycobacterium tuberculosis MenB, a key enzyme in vitamin K-2 biosynthesis. J. Biol. Chem. 278: 42352–42360.CrossRefGoogle Scholar
  20. 20.
    Wong, B. J. and J. A. Gerlt (2004) Evolution of function in the crotonase superfamily: (3S)-methylglutaconyl-CoA hydratase from Pseudomonas putida. Biochemistry-Us. 43: 4646–4654.CrossRefGoogle Scholar
  21. 21.
    Engemann, C., T. Elssner, S. Pfeifer, C. Krumbholz, T. Maier, and H. P. Kleber (2005) Identification and functional characterisation of genes and corresponding enzymes involved in carnitine metabolism of Proteus sp. Arch. Microbiol. 183: 176–189.CrossRefGoogle Scholar
  22. 22.
    Patton, S. M., T. A. Cropp, and K. A. Reynolds (2000) A novel Delta(3),Delta(2)-enoyl-CoA isomerase involved in the biosynthesis of the cyclohexanecarboxylic acid-derived moiety of the polyketide ansatrienin A. Biochemistry-Us. 39: 7595–7604.CrossRefGoogle Scholar
  23. 23.
    Gay, D. C., P. J. Spear, and A. T. Keatinge-Clay (2014) A Double-Hotdog with a New Trick: Structure and Mechanism of the trans-Acyltransferase Polyketide Synthase Enoyl-isomerase. Acs. Chem. Biol. 9: 2374–2381.CrossRefGoogle Scholar
  24. 24.
    Lee, D. and K. J. Kim (2018) Structural Insight into Substrate Specificity of 3-Hydroxypropionyl-Coenzyme A Dehydratase from Metallosphaera sedula. Sci. Rep-Uk. 8.CrossRefGoogle Scholar
  25. 25.
    Schwartz, E., B. Voigt, D. Zuhlke, A. Pohlmann, O. Lenz, D. Albrecht, A. Schwarze, Y. Kohlmann, C. Krause, M. Hecker, and B. Friedrich (2009) A proteomic view of the facultatively chemolithoautotrophic lifestyle of Ralstonia eutropha H16. Proteomics. 9: 5132–5142.CrossRefGoogle Scholar
  26. 26.
    Chakraborty, P., K. Muthukumarappan, and W. R. Gibbons (2012) PHA Productivity and Yield of Ralstonia eutropha When Intermittently or Continuously Fed a Mixture of Short Chain Fatty Acids. J. Biomed. Biotechnol.Google Scholar
  27. 27.
    Eggers, J. and A. Steinbuchel (2013) Poly(3-Hydroxybutyrate) Degradation in Ralstonia eutropha H16 Is Mediated Stereoselectively to (S)-3-Hydroxybutyryl Coenzyme A (CoA) via Crotonyl-CoA. J Bacteriol. 195: 3213–3223.CrossRefGoogle Scholar
  28. 28.
    Pohlmann, A., W. F. Fricke, F. Reinecke, B. Kusian, H. Liesegang, R. Cramm, T. Eitinger, C. Ewering, M. Potter, E. Schwartz, A. Strittmatter, I. Voss, G. Gottschalk, A. Steinbuchel, B. Friedrich, and B. Bowien (2006) Genome sequence of the bioplasticproducing “Knallgas” bacterium Ralstonia eutropha H16. Nat. Biotechnol. 24: 1257–1262.CrossRefGoogle Scholar
  29. 29.
    Peplinski, K., A. Ehrenreich, C. Doring, M. Bomeke, and A. Steinbuchel (2010) Investigations on the microbial catabolism of the organic sulfur compounds TDP and DTDP in Ralstonia eutropha H16 employing DNA microarrays. Appl. Microbiol. Biot. 88: 1145–1159.CrossRefGoogle Scholar
  30. 30.
    Volodina, E. and A. Steinbuchel (2014) (S)-3-hydroxyacyl-CoA dehydrogenase/enoyl-CoA hydratase (FadB') from fatty acid degradation operon of Ralstonia eutropha H16. Amb. Express. 4.Google Scholar
  31. 31.
    Seo, H. and K. Kim (2018) Purification, crystallization and X-ray crystallographic analysis of enoyl-CoA hydratase/isomerasefamily protein from Cupriavidus necator H16. Biodesign. 6: 46–49.Google Scholar
  32. 32.
    Park, S.-Y., S.-C. Ha, and Y.-G. Kim (2017) The protein crystallography beamlines at the pohang light source II. Biodesign. 5: 30–34.Google Scholar
  33. 33.
    Saitou, N. and M. Nei (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.Google Scholar
  34. 34.
    Felsenstein, J. (1985) Confidence Limits on Phylogenies: An Approach Using the Bootstrap. Evolution. 39: 783–791.CrossRefGoogle Scholar
  35. 35.
    Zuckerkandl, E. and L. Pauling (1965) Evolutionary divergence and convergence in proteins. pp. 97–166. Evolving genes and proteins. Elsevier, City.Google Scholar
  36. 36.
    Kumar, S., G. Stecher, M. Li, C. Knyaz, and K. Tamura (2018) MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 35: 1547–1549.CrossRefGoogle Scholar
  37. 37.
    Holm, L. and L. M. Laakso (2016) Dali server update. Nucleic. Acids Res. 44: W351–W355.Google Scholar
  38. 38.
    Teufel, R., V. Mascaraque, W. Ismail, M. Voss, J. Perera, W. Eisenreich, W. Haehnel, and G. Fuchs (2010) Bacterial phenylalanine and phenylacetate catabolic pathway revealed. P Natl. Acad. Sci. USA. 107: 14390–14395.CrossRefGoogle Scholar
  39. 39.
    Harwood, C. S. and R. E. Parales (1996) The beta-ketoadipate pathway and the biology of self-identity. Annu. Rev. Microbiol. 50: 553–590.CrossRefGoogle Scholar
  40. 40.
    Brigham, C. J., D. R. Speth, C. Rha, and A. J. Sinskey (2012) Whole-Genome Microarray and Gene Deletion Studies Reveal Regulation of the Polyhydroxyalkanoate Production Cycle by the Stringent Response in Ralstonia eutropha H16. Appl. Environ. Microb. 78: 8033–8044.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer 2019

Authors and Affiliations

  1. 1.School of Life Sciences, KNU Creative BioResearch GroupKyungpook National UniversityDaeguKorea
  2. 2.KNU Institute for MicroorganismsKyungpook National UniversityDaeguKorea

Personalised recommendations