Biotechnology and Bioprocess Engineering

, Volume 24, Issue 2, pp 308–317 | Cite as

Antioxidant Peptide Purified from Enzymatic Hydrolysates of Isochrysis Zhanjiangensis and Its Protective Effect against Ethanol Induced Oxidative Stress of HepG2 Cells

  • Mei-Fang Chen
  • Yuan Yuan Zhang
  • Mei Di He
  • Cheng Yong Li
  • Chun Xia Zhou
  • Peng Zhi Hong
  • Zhong-Ji QianEmail author
Research Paper


Marine microalgae have been widely applied in cosmaceuticals, nutraceuticals, and functional foods. In the present study, we first investigated the hepatoprotective effects of peptide purified from microalgae, Isochrysis zhanjiangensis on HepG2 cells alcoholic injury. I. zhanjiangensis was hydrolyzed utilizing chymotrypsin, trypsin, pepsin, and by vitro gastrointestinal digestion. Among hydrolysates, the gastrointestinal hydrolysate showed relatively high free radical scavenging ability preliminarily and was purified with following sequential chromatography methods. The amino acid sequence and molecular mass of the purified peptide from I. zhanjiangensis (PIZ) was identified as Asn-Asp-Ala-Glu-Tyr-Gly-Ile-Cys-Gly-Phe (NDAEYGICGF; MW, 1088.16 Da) via Q-TOF ESI/MS. Additionally, PIZ attenuated ethanol-induced cytotoxicity and inhibited the production of intracellular reactive oxygen species by DCFH-DA assay. Western blot results showed that superoxide dismutase (SOD) and glutathione (GSH) levels up-regulated with PIZ treatment before alcohol exposure while gamma-glutamyltransferase (GGT) protein expression down-regulated. These results provide an opportunity to discover new highly active peptide against alcohol toxicity in HepG2 cells.


Isochrysis zhanjiangensis peptide enzymatic hydrolysates free radical scavenging oxidative stress 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The research was funded by the Yangfan Scarce Top Talent Project of Guangdong Province (201433009) and the Program for Postgraduate Courses and Education Reform and Scientific Research Start-Up Funds of Guangdong Ocean University (to Zhong-Ji Qian). The supported by Guangdong Tongde Pharmaceutical Co., Ltd and National Engineering Research Center for Modernization of Traditional Chinese Medicine (Lingnan Medicinal Plant Oil Branch) and funded by Development Project about Marine Economy Demonstration of Zhanjiang City (2017C8B1).


  1. 1.
    Li, C., L. Li, C. F. Yang, Y. J. Zhong, D. Wu, L. Shi, L. Chen, and Y. W. Li (2017) Hepatoprotective effects of methyl ferulic acid on alcohol-induced liver oxidative injury in mice by inhibiting the NOX4/ROS-MAPK pathway. Biochem. Bioph. Res. Co. 493: 277–285.CrossRefGoogle Scholar
  2. 2.
    Stiuso, P., M. L. Bagarolo, C. P. Ilisso, D. Vanacore, E. Martino, M. Caraglia, M. Porcelli, and G. Cacciapuoti (2016) Protective effect of tyrosol and s-adenosylmethionine against ethanol-induced oxidative stress of Hepg2 cells involves sirtuin 1, p53 and erk1/2 signaling. Int. J. Mol. Sci. 17: 622.CrossRefGoogle Scholar
  3. 3.
    Pan, J. H., Y. Lim, J. H. Kim, W. Heo, K. Y. Lee, H. J. Shin, J. K. Kim, J. H. Lee, and Y. J. Kim (2017) Root bark of Ulmus davidiana var. japonica restrains acute alcohol-induced hepatic steatosis onset in mice by inhibiting ROS accumulation. PLoS One 12: e0188381.CrossRefGoogle Scholar
  4. 4.
    Madushani Herath, K. H. I. N., S. J. Bing, J. Cho, A. Kim, G. Kim, J. S. Kim, J. B. Kim, Y. H. Doh, and Y. Jee (2018) Sasa quelpaertensis leaves ameliorate alcohol-induced liver injury by attenuating oxidative stress in HepG2 cells and mice. Acta. Histochem. 120: 477–489.CrossRefGoogle Scholar
  5. 5.
    Zhang, X. X., L. Wang, R. Wang, X. H. Luo, Y. N. Li, and Z. X. Chen (2016) Protective effects of rice dreg protein hydrolysates against hydrogen peroxide-induced oxidative stress in HepG2 cells. Food Funct. 7: 1429–1437.CrossRefGoogle Scholar
  6. 6.
    Wang, P., J. Zhang, H. W. Liu, X. X. Hu, L. L. Feng, X. Yin, and X. B. Zhang (2017) An efficient two-photon fluorescent probe for measuring gamma-glutamyltranspeptidase activity during the oxidative stress process in tumor cells and tissues. Analyst 142: 1813–1820.CrossRefGoogle Scholar
  7. 7.
    Kroboth, P. D., A. Brown, J. A. Lyon, F. J. Kroboth, and R. P. Juhl (1982) Pharmacokinetics of single-dose erythromycin in normal and alcoholic liver disease subjects. Antimicrob. Agents Ch. 21: 135–140.CrossRefGoogle Scholar
  8. 8.
    Song, Z. Y., Z. X. Zhou, T. Chen, D. Hill, J. Kang, S. Barve, and C. McClain (2003) S-Adenosylmethionine (SAMe) protects against acute alcohol induced hepatotoxicity in mice. J. Nutr. Biochem. 14: 591–597.CrossRefGoogle Scholar
  9. 9.
    Zeng, C. C., S. H. Lai, J. H. Yao, C. Zhang, H. Yin, W. Li, B. J. Han, and Y. J. Liu (2016) The induction of apoptosis in HepG2 cells by ruthenium (II) complexes through an intrinsic ROS-mediated mitochondrial dysfunction pathway. Eur. J. Med. Chem. 122: 118–126.CrossRefGoogle Scholar
  10. 10.
    Kim, H., J. H. Pan, S. H. Kim, J. H. Lee, and J. W. Park (2018) Chlorogenic acid ameliorates alcohol-induced liver injuries through scavenging reactive oxygen species. Biochimie 150: 131–138.CrossRefGoogle Scholar
  11. 11.
    Chen, Y., C. H. Ke, S. Y. Zhang, and X. J. Dai (2017) Feeding rate responses of Babylonia formosae habei (Prosobranchia: Buccinidae) larvae on cultured algae. Aquac. Res. 48: 1538–1549.CrossRefGoogle Scholar
  12. 12.
    Montone, C. M., A. L. Capriotti, C. Cavaliere, G. L. Barbera, S. Piovesana, R. Z. Chiozzi, and A. Laganà (2018) Peptidomic strategy for purification and identification of potential ACE-inhibitory and antioxidant peptides in Tetradesmus obliquus microalgae. Anal. Bioanal. Chem. 410: 3573–3586.CrossRefGoogle Scholar
  13. 13.
    Yu, S. S., Y. F. Zhang, Y. Ran, W. Y. Lai, Z. S. Ran, J. L. Xu, C. X. Zhou, and X. J. Yan (2018) Characterization of steryl glycosides in marine microalgae by gas chromatography-triple quadrupole mass spectrometry (GC-QQQ-MS). J. Sci. Food Agric. 98: 1574–1583.CrossRefGoogle Scholar
  14. 14.
    Khan, M. I., J. H. Shin, and J. D. Kim (2018) The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Fact. 17: 36.CrossRefGoogle Scholar
  15. 15.
    Ejike, C. E. C. C, S. A. Collins, N. Balasuriya, A. K. Swanson, B. Mason, and C. C. Udenigwe (2017) Prospects of microalgae proteins in producing peptide-based functional foods for promoting cardiovascular health. Trends Food Sci. Tech. 59: 30–36.CrossRefGoogle Scholar
  16. 16.
    Fidalgo, J. P., A. Cid, E. Torres, A. Sukenik, and C. Herrero (1998) Effects of nitrogen source and growth phase on proximate biochemical composition, lipid classes and fatty acid profile of the marine microalga Isochrysis galbana. Aquaculture 166: 105–116.CrossRefGoogle Scholar
  17. 17.
    Feng, D. N., Z. A. Chen, S. Xue, and W. Zhang (2011) Increased lipid production of the marine oleaginous microalgae Isochrysis zhangjiangensis (Chrysophyta) by nitrogen supplement. Bioresour. Technol. 102: 6710–6716.CrossRefGoogle Scholar
  18. 18.
    Darewicz, M., J. Dziuba and M. Dziuba (2006) Functional properties and biological activities of bovine casein proteins and peptides. Pol. J. Food Nutr. Sci. 15: 79–86.Google Scholar
  19. 19.
    Nongonierma, A. B and R. J. FitzGerald (2018) Enhancing bioactive peptide release and identification using targeted enzymatic hydrolysis of milk proteins. Anal. Bioanal. Chem. 410: 3407–3423.CrossRefGoogle Scholar
  20. 20.
    Harnedy, P. A. and R. J. FitzGerald (2012) Bioactive peptides from marine processing waste and shellfish: a review. J. Funct. Foods 4: 6–24.CrossRefGoogle Scholar
  21. 21.
    Ngo, D. H., T. S. Vo, D. N. Ngo, I. Wijesekara, and S. K. Kim. (2012) Biological activities and potential health benefits of bioactive peptides derived from marine organisms. Int. J. Biol. Macromol. 51: 378–383.CrossRefGoogle Scholar
  22. 22.
    Kim, S. K. and K. H. Kang (2011) Medicinal effects of peptides from marine microalgae. Adv. Food Nutr. Res. 64: 313–323.CrossRefGoogle Scholar
  23. 23.
    Dong, X. L., S. Xue, J. L. Zhang, W. Huang, J. N. Zhou, Z. A. Chen, D. H. Yuan, Y. P. Xu, and Z. M. Liu (2014) The production of light olefins by catalytic cracking of the microalga Isochrysis zhanjiangensis over a modified ZSM-5 catalyst. Chinese J. Catal. 35: 684–691.CrossRefGoogle Scholar
  24. 24.
    Je, J. Y., Z. J. Qian, H.G. Byun, and S. K. Kim (2007) Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis. Process Biochem. 42: 840–846.CrossRefGoogle Scholar
  25. 25.
    Qian, Z. J., W. K. Jung, H. G. Byun, and S. K. Kim (2008) Protective effect of an antioxidative peptide purified from gastrointestinal digests of oyster, Crassostrea gigas against free radical induced DNA damage. Bioresour. Technol. 99: 3365–3371.CrossRefGoogle Scholar
  26. 26.
    Adler-Nissen, J. (1979) Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid. J. Agric. Food Chem. 27: 1256–1262.CrossRefGoogle Scholar
  27. 27.
    Kang, K. H., Z. J. Qian, B. Ryu, D. Kim, and S. K. Kim (2012) Protective effects of protein hydrolysate from marine microalgae Navicula incerta on ethanol-induced toxicity in HepG2/CYP2E1 cells. Food Chem. 132: 677–685.CrossRefGoogle Scholar
  28. 28.
    Qian, Z. J., W. K. Jung, and S.K. Kim (2008) Free radical scavenging activity of a novel antioxidative peptide purified from hydrolysate of bullfrog skin, Rana catesbeiana Shaw. Bioresour. Technol. 99: 1690–1698.CrossRefGoogle Scholar
  29. 29.
    Gao, Z. H., K. X. Huang, X. L. Yang, and H. B. Xu (1999) Free radical scavenging and antioxidant activities of £avonoids extracted from the radix of Scutellaria baicalensis Georgi. BBA-Gen. Subjects 1472: 643–650.CrossRefGoogle Scholar
  30. 30.
    Rajapakse, N., E. Mendis, H. G. Byun, and S. K. Kim (2005) Purification and in vitro antioxidative effects of giant squid muscle peptides on free radical-mediated oxidative systems. J. Nutr. Biochem. 16: 562–569.CrossRefGoogle Scholar
  31. 31.
    Mendis, E., N. Rajapakse, and S. K. Kim (2005) Antioxidant properties of a radical-scavenging peptide purified from enzymatically prepared fish skin gelatin hydrolysate. J. Argic. Food Chem. 53: 581–587.CrossRefGoogle Scholar
  32. 32.
    Lee, S. J., S. H. Cheong, Y. S. Kim, J. W. Hwang, H. J. Kwon, S. H. Kang, S. H. Moon, B. T. Jeon, and P. J. Park (2013) Antioxidant activity of a novel synthetic hexa-peptide derived from an enzymatic hydrolysate of duck skin by-products. Food Chem. Toxicol. 62: 276–280.CrossRefGoogle Scholar
  33. 33.
    Ji, Y. Y., Z. D. Wang, Z. F. Li, A. J. Zhang, Y. F. Jin, H.Y. Chen, and X. F. Le (2016) Angiotesin II enhances proliferation and inflammation through AT1/PKC/NF-κB signaling pathway in hepatocellular carcinoma cells. Cell. Physiol. Biochem. 39: 13–32.CrossRefGoogle Scholar
  34. 34.
    Guo, M. R., X. J. Chen, Y. L. Wu, L. J. Zhang, W. X. Huang, Y. Yuan, M. Fang, J. L. Xie, and D. Z. Wei (2017) Angiotensin I-converting enzyme inhibitory peptides from Sipuncula (Phascolosoma esculenta): purification, identification, molecular docking and antihypertensive effects on spontaneously hypertensive rats. Process Biochem. 63: 84–95.CrossRefGoogle Scholar
  35. 35.
    Jun, S.Y., P. J. Park, W. K. Jung, and S. K. Kim (2004) Purification and characterization of an antioxidative peptide from enzymatic hydrolysate of yellowfin sole (Limanda aspera) frame protein. Eur. Food Res. Technol. 219: 20–26.CrossRefGoogle Scholar
  36. 36.
    Wu, H. C., H. M. Chen, and C. Y. Shiau (2003) Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Res. Int. 36: 949–957.CrossRefGoogle Scholar
  37. 37.
    Jung, W. K., N. Rajapakse, and S. K. Kim (2005) Antioxidative activity of a low molecular weight peptide derived from the sauce of fermented blue mussel, Mytilus edulis. Eur. Food Res. Technol. 220: 535–539.CrossRefGoogle Scholar
  38. 38.
    Puchalska, P., M. L. Marina, and M. C. Garcia (2014) Isolation and identification of antioxidant peptides from commercial soybean-based infant formulas. Food Chem. 148: 147–154.CrossRefGoogle Scholar
  39. 39.
    Santos, E. F., K. H. Tsuboi, M. R. Araújo, A. C. Ouwehand, N. A. Andreollo, and C. K. Miyasaka (2009) Dietary polydextrose increases calcium absorption in normal rats. Arq. Bras. Cir. Dig. 22: 201–205.CrossRefGoogle Scholar
  40. 40.
    Xing, L. J., R. Liu, C. B. Tang, J. Pereira, G. H. Zhou, and W. G. Zhang (2018) The antioxidant activity and transcellular pathway of Asp-Leu-Glu-Glu in a Caco-2 cell monolayer. Int. J. Food Sci. Tech. 53: 2405–2414.CrossRefGoogle Scholar
  41. 41.
    Cui P. B., S. Y. Lin, Z. Q. Jin, B. W. Zhu, L. Song, and N. Sun (2018) In vitro digestion profile and calcium absorption studies of sea cucumber ovum derived heptapeptide-calcium complex. Food Funct. 9: 4582–4592.CrossRefGoogle Scholar
  42. 42.
    Altundag, H., S. Albayrak, M. S. Dundar, M. Tuzen, and M. Soylak (2015) Investigation of the influence of selected soil and plant properties from Sakarya, Turkey, on the bioavailability of trace elements by applying an in vitro digestion model. Biol. Trace Elem. Res. 168: 276–285.CrossRefGoogle Scholar
  43. 43.
    Marta, G., M. Leticia, and T. Fidel (2018) Characterization of the antioxidant peptide AEEEYPDL and its quantification in Spanish dry-cured ham. Food Chem. 258: 8–15.CrossRefGoogle Scholar
  44. 44.
    Blokhina, O., E. Virolainen, and K. V. Fagerstedt (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot-london 91: 179–194.CrossRefGoogle Scholar
  45. 45.
    Li, G. L., Y. Ye, J. J. Kang, X. Y Yao, Y. Z. Zhang, W. Jiang, M. Gao, Y. D. Dai, Y. Q. Xin, Q. Wang, Z. M. Yin, and L. Luo (2012) L-theanine prevents alcoholic liver injury through enhancing the antioxidant capability of hepatocytes. Food Chem. Toxicol. 50: 363–372.CrossRefGoogle Scholar
  46. 46.
    Jones, D. P. (2002) Redox potential of GSH/GSSG couple: assay and biological significance. Method. Enzymol. 348: 93–112.CrossRefGoogle Scholar
  47. 47.
    Praetorius Björk, M. and B. Johansson (2017) Gamma-Glutamyltransferase (GGT) as a biomarker of cognitive decline at the end of life: contrasting age and time to death trajectories. Int. Psychogeriatr. 30: 981–990.CrossRefGoogle Scholar
  48. 48.
    Yang, X. Z., F. Lin, Y. N. Zhang, H. J. Hu, Y.F. Shi, S. Liang, T. Zhao, Y. Fu, J. C. Duan, and Z. W. Sun (2018) Cytotoxicity induced by fine particulate matter (PM2.5) via mitochondria-mediated apoptosis pathway in human cardiomyocytes. Ecotox. Environ. Safe 161: 198–207.CrossRefGoogle Scholar
  49. 49.
    Ngo, D. H., Z. J. Qian, B. Ryu, J. W. Park, and S. K. Kim (2010) In vitro antioxidant activity of a peptide isolated from Nile tilapia (Oreochromis niloticus) scale gelatin in free radical-mediated oxidative systems. J. Funct. Foods 2: 107–117.CrossRefGoogle Scholar
  50. 50.
    Zhang, R. L., J. Chen, X. W. Jiang, L. H. Yin, and X. W. Zhang (2016) Antioxidant and hypoglycaemic effects of tilapia skin collagen peptide in mice. Int. J. Food Sci. Tech. 51: 2157–2163.CrossRefGoogle Scholar
  51. 51.
    Wang, Y., Q. C. Zheng, J. L. Zhang, Y. L. Cui, Q. Xue, and H. X. Zhang (2013) Highlighting a π-π interaction: a protein modeling and molecular dynamics simulation study on Anopheles gambiae glutathione S-transferase 1–2. J. Mol. Model 19: 5213–5223.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer 2019

Authors and Affiliations

  • Mei-Fang Chen
    • 1
  • Yuan Yuan Zhang
    • 1
  • Mei Di He
    • 1
  • Cheng Yong Li
    • 2
    • 3
  • Chun Xia Zhou
    • 1
  • Peng Zhi Hong
    • 1
  • Zhong-Ji Qian
    • 2
    • 3
    Email author
  1. 1.College of Food Science and TechnologyGuangdong Ocean UniversityZhanjiangChina
  2. 2.School of Chemistry and EnvironmentGuangdong Ocean UniversityZhanjiangChina
  3. 3.Shenzhen Institute of Guangdong Ocean UniversityShenzhenChina

Personalised recommendations