Biotechnology and Bioprocess Engineering

, Volume 23, Issue 5, pp 564–572 | Cite as

Application of Transcription Factor-based 3-Hydroxypropionic Acid Biosensor

  • Nam Hoai Nguyen
  • Jung-Rae Kim
  • Sunghoon Park
Research Paper


Application of the recently developed wholecell 3-HP biosensor, which detects 3-hydroxypropionic acid (3-HP) and expresses fluorescence as an output signal in response to the 3-HP concentration, was studied in three areas of enzyme and metabolic engineering. First, a sensor was applied to identify active 3-hydroxyaldehyde dehydrogenase (ALDH), a key enzyme in the 3-HP production pathway. Second, with the aid of helper enzymes that catalyze the conversion of 1,3-propanediol (1,3-PDO) to 3-HP, a 3-HP biosensor was converted into a 1,3-PDO biosensor. Third, a 3-HP biosensor, with proper modifications in expression module of the output signal and the use of pH-tolerant red fluorescent protein (RFP), was shown to monitor the rate of 3-HP production under process conditions in which one or more interfering compounds are present in the culture medium and/or the medium pH decreases. This study demonstrates that 3-HP biosensors can be widely used in enzyme and metabolic engineering applications for 3-HP production.


biosensor 3-hydroxypropionic acid 1,3-propanediol high-throughput screening Pseudomonas denitrificans 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12257_2018_390_MOESM1_ESM.pdf (124 kb)
Table S1. Bacterial strains, plasmids and used in this study.


  1. 1.
    Nielsen, J. (2001) Metabolic engineering. Appl. Microbiol. Biotechnol. 55: 263–283.CrossRefGoogle Scholar
  2. 2.
    Ongley, S. E., X. Bian, B. A. Neilan, and R. Müller (2013) Recent advances in the heterologous expression of microbial natural product biosynthetic pathways. Nat. Prod. Rep. 30: 1121–1138.CrossRefGoogle Scholar
  3. 3.
    Alper, H., J. Moxley, E. Nevoigt, G. R. Fink, and G. Stephanopoulos (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314: 1565–1568.CrossRefGoogle Scholar
  4. 4.
    Abatemarco, J., A. Hill, and H. S. Alper (2013) Expanding the metabolic engineering toolbox with directed evolution. Biotechnol. J. 8: 1397–1410.CrossRefGoogle Scholar
  5. 5.
    Cheong, D. E., K. C. Ko, Y. Han, H. G. Jeon, B. H. Sung, G. J. Kim, and J. J. Song (2015) Enhancing functional expression of heterologous proteins through random substitution of genetic codes in the 5’coding region. Biotechnol. Bioeng. 112: 822–826.CrossRefGoogle Scholar
  6. 6.
    Lee, M. E., A. Aswani, A. S. Han, C. J. Tomlin, and J. E. Dueber (2013) Expression-level optimization of a multi-enzyme pathway in the absence of a high-throughput assay Nucleic Acids Res. 41: 10668–10678.Google Scholar
  7. 7.
    Dietrich, J. A., A. E. McKee, and J. D. Keasling (2010) Highthroughput metabolic engineering: advances in small-molecule screening and selection. Annu. Rev. Biochem. 79: 563–590.CrossRefGoogle Scholar
  8. 8.
    Liu, Y., Y. Liu, and M. Wang (2017) Design, optimization and application of small molecule biosensor in metabolic engineering. Front. Microbiol. 8: 2012.CrossRefGoogle Scholar
  9. 9.
    Lippincott-Schwartz, J. and G. H. Patterson (2003) Development and use of fluorescent protein markers in living cells. Science 300: 87–91.CrossRefGoogle Scholar
  10. 10.
    Park, C. R., S. J. Park, W. G. Lee, and B. H. Hwang (2018) Biosensors using hybridization chain reaction–Design and signal amplification strategies of hybridization chain reaction. Biotechnol. Bioproc. Eng. 23: 355–370.CrossRefGoogle Scholar
  11. 11.
    Tsien, R. Y. (2005) Breeding and building molecules to spy on cells and tumors. FEBS Lett. 579: 927–932.CrossRefGoogle Scholar
  12. 12.
    Giepmans, B. N., S. R. Adams, M. H. Ellisman, and R. Y. Tsien (2006) The fluorescent toolbox for assessing protein location and function. Science 312: 217–224.CrossRefGoogle Scholar
  13. 13.
    Ibraheem, A. and R. E. Campbell (2010) Designs and applications of fluorescent protein-based biosensors. Curr. Opin. Chem. Biol. 14: 30–36.CrossRefGoogle Scholar
  14. 14.
    Liu, Y., Y. Zhuang, D. Ding, Y. Xu, J. Sun, and D. Zhang (2017) Biosensor-based evolution and elucidation of a biosynthetic pathway in Escherichia coli. ACS Synth. Biol. 6: 837–848.CrossRefGoogle Scholar
  15. 15.
    Rogers, J. K. and G. M. Church (2016) Genetically encoded sensors enable real-time observation of metabolite production. Proc. Natl. Acad. Sci. USA 113: 2388–2393.CrossRefGoogle Scholar
  16. 16.
    Zhou, S., S. K. Ainala, E. Seol, T. T. Nguyen, and S. Park (2015) Inducible gene expression system by 3-hydroxypropionic acid. Biotechnol Biofuels 8: 169.CrossRefGoogle Scholar
  17. 17.
    Raj, S. M., C. Rathnasingh, J. E. Jo, and S. Park (2008) Production of 3-hydroxypropionic acid from glycerol by a novel recombinant Escherichia coli BL21 strain. Process Biochem. 43: 1440–1446.CrossRefGoogle Scholar
  18. 18.
    Watanabe, S., M. Yamada, I. Ohtsu, and K. Makino (2007) a-Ketoglutaric semialdehyde dehydrogenase isozymes involved in metabolic pathways of D-glucarate, D-galactarate, and hydroxy-L-proline. Molecular and metabolic convergent evolution. J. Biol. Chem. 282: 6685–6695.CrossRefGoogle Scholar
  19. 19.
    Seok, J. Y., J. Yang, S. J. Choi, H. G. Lim, U. J. Choi, K. J. Kim, S. Park, T. H. Yoo, and G. Y. Jung (2018) Directed evolution of the 3-hydroxypropionic acid production pathway by engineering aldehyde dehydrogenase using a synthetic selection device. Metab. Eng. 47: 113–120.CrossRefGoogle Scholar
  20. 20.
    Park, Y. S., U. J. Choi, N. H. Nam, S. J. Choi, A. Nasir, S. G. Lee, K. J. Kim, G. Y. Jung, S. Choi, J. Y. Shim, S. Park, and T. H. Yoo (2017) Engineering an aldehyde dehydrogenase toward its substrates, 3-hydroxypropanal and NAD+, for enhancing the production of 3-hydroxypropionic acid. Sci. Rep. 7: 17155.CrossRefGoogle Scholar
  21. 21.
    Nakamura, C. E. (2000) Method for the production of 1,3 propanediol by recombinant microorganisms. US Patent 6,013,494.Google Scholar
  22. 22.
    Kumar, V. and S. Park (2018) Potential and limitations of Klebsiella pneumoniae as a microbial cell factory utilizing glycerol as the carbon source. Biotechnol. Adv. 36: 150–167.CrossRefGoogle Scholar
  23. 23.
    Eggeling, L., M. Bott, and J. Marienhagen (2015) Novel screening methods-biosensors. Curr. Opin. Biotechnol. 35: 30–6.CrossRefGoogle Scholar
  24. 24.
    de Lorenzo, V., E. Lindsay, B. Kesslerb, and K. N. Timmis (1993) Analysis of Pseudomonas gene products using lacIq/ Ptrp-lac plasmids and transposons that confer conditional phenotypes. Gene 123: 17–24.CrossRefGoogle Scholar
  25. 25.
    Kang, Y., M. S. Son, and T. T. Hoang (2007) One step engineering of T7-expression strains for protein production: Increasing the host-range of the T7-expression system. Protein Expr. Purif. 55: 325–333.CrossRefGoogle Scholar
  26. 26.
    Morita, Y., S. I. Narita, J. Tomida, H. Tokuda, and Y. Kawamura (2010) Application of an inducible system to engineer unmarked conditional mutants of essential genes of Pseudomonas aeruginosa. J. Microbiol. Meth. 82: 205–213.CrossRefGoogle Scholar
  27. 27.
    Roberts, T. M., F. Rudolf, A. Meyer, R. Pellaux, E. Whitehead, S. Panke, and M. Held (2016) Identification and characterisation of a pH-stable GFP. Sci. Rep. 6: 28166.CrossRefGoogle Scholar
  28. 28.
    Shaner, N. C., P. A Steinbach, and R. Y. Tsien (2005) A guide to choosing fluorescent proteins Nat. Methods 2: 905–909.Google Scholar
  29. 29.
    Kumar, V., S. Ashok, and S. Park (2013) Recent advances in biological production of 3-hydroxypropionic acid. Biotechnol. Adv. 31: 945–961.CrossRefGoogle Scholar
  30. 30.
    Park, S. Development of 3-hydroxypropionic acid inducible promoter system and construction of biological 3-hydroxypropionic acid production pathway using these promoter systems. European Patent PCT/KR2016/006261.Google Scholar
  31. 31.
    Zhou, S., C. Catherine, C. Rathnasingh, A. Somasundar, and S. Park (2013) Production of 3-hydroxypropionic acid from glycerol by recombinant Pseudomonas denitrificans. Biotechnol. Bioeng. 110: 3177–3187.CrossRefGoogle Scholar
  32. 32.
    Lim, H. G., M. H. Noh, J. H. Jeong, S. Park, and G. Y. Jung (2016) Optimum rebalancing of the 3-hydroxypropionic acid production pathway from glycerol in Escherichia coli. ACS Synth. Biol. 5: 1247–1255.CrossRefGoogle Scholar
  33. 33.
    Sankaranarayanan, M., A. Somasundar, E. Seol, A. S. Chauhan, S. Kwon, G. Y. Jung, and S. Park (2017) Production of 3-hydroxypropionic acid by balancing the pathway enzymes using synthetic cassette architecture. J. Biotechnol. 259: 140–147.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Nam Hoai Nguyen
    • 1
    • 2
  • Jung-Rae Kim
    • 1
  • Sunghoon Park
    • 1
    • 2
  1. 1.School of Chemical and Biomolecular EngineeringPusan National UniversityBusanKorea
  2. 2.School of Energy and Chemical EngineeringUNISTUlsanKorea

Personalised recommendations