Advertisement

Genomic Characterization of a Newly Isolated Rhizobacteria Sphingomonas panacis Reveals Plant Growth Promoting Effect to Rice

  • Yeon-Ju KimEmail author
  • Jaewon Lim
  • Johan Sukweenadhi
  • Ji Woong Seok
  • Sang-Won Lee
  • Jong Chan Park
  • Assiya Taizhanova
  • Donghyuk KimEmail author
  • Deok Chun Yang
Research Paper
  • 9 Downloads

Abstract

This article reports the full genome sequence of Sphingomonas panacis DCY99T (=KCTC 42347T =JCM30806T), which is a Gram-negative rod-shaped, nonspore forming, motile bacterium isolated from rusty ginseng root in South Korea. A draft genome of S. panacis DCY99T and a single circular plasmid were generated using the PacBio platform. Antagonistic activity experiment showed S. panacis DCY99T has the plant growth promoting effect. Thus, the genome sequence of S. panacis DCY99T may contribute to biotechnological application of the genus Sphingomonas in agriculture.

Keywords

Sphingomonas panacis genome plant growth promoting rhizobacteria (PGPR) systemic resistance Xanthomonas oryzae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12257_2018_386_MOESM1_ESM.pdf (144 kb)
Supplementary material, approximately 145 KB.

References

  1. 1.
    Yabuuchi, E., Y. Kosako, N. Fujiwara, T. Naka, I. Matsunaga, H. Ogura, and K. Kobayashi (2002) Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola. International Journal of Systematic and Evolutionary Microbiology 52: 1485–1496.Google Scholar
  2. 2.
    Takeuchi, M., K. Hamana, and A. Hiraishi (2001) Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. International Journal of Systematic and Evolutionary Microbiology 51: 1405–1417.CrossRefGoogle Scholar
  3. 3.
    Glaeser, S. P. and P. Kämpfer (2014) The family sphingomonadaceae. pp. 641–707. The Prokaryotes. Springer, City.CrossRefGoogle Scholar
  4. 4.
    Shin, S. C., S. J. Kim, D. H. Ahn, J. K. Lee, and H. Park (2012) Draft genome sequence of Sphingomonas echinoides ATCC 14820. Journal of Bacteriology 194: 1843–1843.CrossRefGoogle Scholar
  5. 5.
    Yoon, J.-H., C.-H. Lee, S.-H. Yeo, and T.-K. Oh (2005) Sphingopyxis baekryungensis sp. nov., an orange-pigmented bacterium isolated from sea water of the Yellow Sea in Korea. International Journal of Systematic and Evolutionary Microbiology 55: 1223–1227.Google Scholar
  6. 6.
    Lu, P., C. Chen, Q. Wang, Z. Wang, X. Zhang, and S. Xie (2013) Phylogenetic diversity of microbial communities in real drinking water distribution systems. Biotechnology and Bioprocess Engineering 18: 119–124.CrossRefGoogle Scholar
  7. 7.
    Yang, Q., J. Wang, X. Han, Y. Xu, D. Liu, H. Hao, X. Li, Y. Guo, T. Niu, and S. Qi (2014) Analysis of the bacterial community in a full-scale printing and dyeing wastewater treatment system based on T-RFLP and 454 pyrosequencing. Biotechnology and Bioprocess Engineering 19: 191–200.CrossRefGoogle Scholar
  8. 8.
    Margesin, R., D.-C. Zhang, and H.-J. Busse (2012) Sphingomonas alpina sp. nov., a psychrophilic bacterium isolated from alpine soil. International Journal of Systematic and Evolutionary Microbiology 62: 1558–1563.CrossRefGoogle Scholar
  9. 9.
    Pan, L., H. Zhou, J. Li, B. Huang, J. Guo, X.-L. Zhang, L.-C. Gao, C. Xu, and C.-T. Liu (2016) Draft genome sequence of Sphingomonas paucimobilis strain LCT-SP1 isolated from the Shenzhou X spacecraft of China. Standards in Genomic Sciences 11: 18.CrossRefGoogle Scholar
  10. 10.
    Lee, H., S. C. Shin, J. Lee, S. J. Kim, B.-K. Kim, S. G. Hong, E. H. Kim, and H. Park (2012) Genome sequence of Sphingomonas sp. strain PAMC 26621, an Arctic-lichen-associated bacterium isolated from a Cetraria sp. Journal of Bacteriology 194: 3030–3030.Google Scholar
  11. 11.
    Ohta, H., R. Hattori, Y. Ushiba, H. Mitsui, M. Ito, H. Watanabe, A. Tonosaki, and T. Hattori (2004) Sphingomonas oligophenolica sp. nov., a halo-and organo-sensitive oligotrophic bacterium from paddy soil that degrades phenolic acids at low concentrations. International Journal of Systematic and Evolutionary Microbiology 54: 2185–2190.Google Scholar
  12. 12.
    Aylward, F. O., B. R. McDonald, S. M. Adams, A. Valenzuela, R. A. Schmidt, L. A. Goodwin, T. Woyke, C. R. Currie, G. Suen, and M. Poulsen (2013) Comparison of 26 sphingomonad genomes reveals diverse environmental adaptations and biodegradative capabilities. Applied and Environmental Microbiology AEM. 00518–00513.Google Scholar
  13. 13.
    Wu, M., G. Li, H. Huang, S. Chen, Y. Luo, W. Zhang, K. Li, J. Zhou, and T. Ma (2016) The simultaneous production of sphingan Ss and poly (R-3-hydroxybutyrate) in Sphingomonas sanxanigenens NX02. International Journal of Biological Macromolecules 82: 361–368.CrossRefGoogle Scholar
  14. 14.
    Gai, Z., X. Wang, X. Zhang, F. Su, X. Wang, H. Tang, C. Tai, F. Tao, C. Ma, and P. Xu (2011) Genome sequence of Sphingomonas elodea ATCC 31461, a highly productive industrial strain of gellan gum. Journal of Bacteriology 193: 7015–7016.CrossRefGoogle Scholar
  15. 15.
    Wang, X., F. Tao, Z. Gai, H. Tang, and P. Xu (2012) Genome sequence of the welan gum-producing strain Sphingomonas sp. ATCC 31555. Journal of Bacteriology 194: 5989–5990.CrossRefGoogle Scholar
  16. 16.
    Tala, A., M. Lenucci, A. Gaballo, M. Durante, S. M. Tredici, D. A. Debowles, G. Pizzolante, C. Marcuccio, E. Carata, and G. Piro (2013) Sphingomonas cynarae sp. nov., a proteobacterium that produces an unusual type of sphingan. International Journal of Systematic and Evolutionary Microbiology 63: 72–79.Google Scholar
  17. 17.
    García-Romero, I., A. J. Pérez-Pulido, Y. E. González-Flores, F. Reyes-Ramírez, E. Santero, and B. Floriano (2016) Genomic analysis of the nitrate-respiring Sphingopyxis granuli (formerly Sphingomonas macrogoltabida) strain TFA. BMC Genomics 17: 93.CrossRefGoogle Scholar
  18. 18.
    Wachowska, U., W. Irzykowski, M. Jędryczka, A. D. Stasiulewicz-Paluch, and K. Głowacka (2013) Biological control of winter wheat pathogens with the use of antagonistic Sphingomonas bacteria under greenhouse conditions. Biocontrol Science and Technology 23: 1110–1122.CrossRefGoogle Scholar
  19. 19.
    Singh, P., Y.-J. Kim, V.-A. Hoang, M. E.-A. Farh, and D.-C. Yang (2015) Sphingomonas panacis sp. nov., isolated from rhizosphere of rusty ginseng. Antonie Van Leeuwenhoek 108: 711–720.CrossRefGoogle Scholar
  20. 20.
    Sukweenadhi, J., Y.-J. Kim, C. H. Kang, M. E.-A. Farh, N.-L. Nguyen, V.-A. Hoang, E.-S. Choi, and D. -C. Yang (2015) Sphingomonas panaciterrae sp. nov., a plant growth-promoting bacterium isolated from soil of a ginseng field. Archives of Microbiology 197: 973–981.Google Scholar
  21. 21.
    Sievers, F. and D. G. Higgins (2014) Clustal omega. Current Protocols in Bioinformatics 48: 3.13. 11–13.13.16.Google Scholar
  22. 22.
    Lowe, T. M. and S. R. Eddy (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research 25: 955.CrossRefGoogle Scholar
  23. 23.
    Lagesen, K., P. Hallin, E. A. Rødland, H.-H. Stærfeldt, T. Rognes, and D. W. Ussery (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Research 35: 3100–3108.CrossRefGoogle Scholar
  24. 24.
    Ashburner, M., C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P. Davis, K. Dolinski, S. S. Dwight, and J. T. Eppig (2000) Gene Ontology: tool for the unification of biology. Nature Genetics 25: 25.CrossRefGoogle Scholar
  25. 25.
    Carver, T. J., K. M. Rutherford, M. Berriman, M.-A. Rajandream, B. G. Barrell, and J. Parkhill (2005) ACT: the Artemis comparison tool. Bioinformatics 21: 3422–3423.CrossRefGoogle Scholar
  26. 26.
    Yun, M., Y.-K. Oh, R. Praveenkumar, Y.-S. Seo, and S. Cho (2017) Contaminated bacterial effects and qPCR application to monitor a specific bacterium in Chlorella sp. KR-1 culture. Biotechnology and Bioprocess Engineering 22: 150–160.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yeon-Ju Kim
    • 1
    Email author
  • Jaewon Lim
    • 1
    • 2
  • Johan Sukweenadhi
    • 1
  • Ji Woong Seok
    • 3
  • Sang-Won Lee
    • 1
  • Jong Chan Park
    • 1
  • Assiya Taizhanova
    • 1
    • 2
  • Donghyuk Kim
    • 2
    • 4
    • 5
    Email author
  • Deok Chun Yang
    • 1
  1. 1.Graduate School of Biotechnology, College of Life ScienceKyung Hee UniversityYonginKorea
  2. 2.School of Energy and Chemical EngineeringUlsan National Institute of Science and Technology (UNIST)UlsanKorea
  3. 3.Lab Genomics Co. LtdSeongnamKorea
  4. 4.School of Biological SciencesUlsan National Institute of Science and Technology (UNIST)UlsanKorea
  5. 5.Korean Genomics Industrialization and Commercialization CenterUlsan National Institute of Science and Technology (UNIST)UlsanKorea

Personalised recommendations