Advertisement

Development of Biosensor for 3-Hydroxypropionic Acid

  • Nam Hoai Nguyen
  • Jung-Rae Kim
  • Sunghoon Park
Research Paper
  • 23 Downloads

Abstract

In this study, whole-cell biosensors that detect and indicate the concentration of 3-hydroxypropionic acid (3-HP) by producing a green fluorescent signal were developed using a transcription factor (TF)-responsive 3- HP inducible promoter identified in the Pseudomonas denitrificans 3-HP degradation pathway. Upon forming a complex with 3-HP, the MmsR TF protein, a LysR-type transcriptional regulator (LTTR), binds to the PmmsA promoter and controls the expression of the PmmsA-regulated gfp reporter gene in response to the concentration of 3-HP. Furthermore, by enhancing the expression of MmsR and through mutagenesis of the PmmsA promoter region, three well-performing biosensors were developed that covered a wide dynamic range of 3-HP (0.01-100 mM when added externally) with ~100-fold signal change upon induction in P. denitrificans. The 3-HP biosensor machinery, composed of MmsR, the PmmsA promoter and gfp could also function well in E. coli and P. putida. The developed 3-HP biosensors should be useful for engineering 3-HP-producing strains and the enzymes associated with its production.

Keywords

biosensor 3-hydroxypropionic acid Pseudomonas denitrificans fluorescent protein 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12257_2018_380_MOESM1_ESM.pdf (455 kb)
Supplementary material, approximately 455 KB.

References

  1. 1.
    Ongley, S. E., X. Bian, B. A. Neilan, and R. Müller (2013) Recent advances in the heterologous expression of microbial natural product biosynthetic pathways. Nat. Prod. Rep. 30: 1121–1138.CrossRefGoogle Scholar
  2. 2.
    Nielsen, J. (2001) Metabolic engineering. Appl. Microbiol. Biotechnol. 55: 263–283.CrossRefGoogle Scholar
  3. 3.
    Chae, C. G., Y. J. Kim, S. J. Lee, Y. H. Oh, J. E. Yang, J. C. Joo, K. H. Kang, Y. Jang, H. Lee, A. Park, B. K. Song, S. Y. Lee, and S. J. Park (2016) Biosynthesis of poly(2–hydroxybutyrate–colactate) in metabolically engineered Escherichia coli. Biotechnol. Bioproc. Eng. 21: 169–174.CrossRefGoogle Scholar
  4. 4.
    Li, M., J. Wang, Y. Geng, Y. Li, Q. Wang, Q. Liang, and Q. Qi (2012) A strategy of gene overexpression based on tandem repetitive promoters in Escherichia coli. Microb. Cell Fact. 11: 19.CrossRefGoogle Scholar
  5. 5.
    Cheong, D. E., K. C. Ko, Y. Han, H. G. Jeon, B. H. Sung, G. J. Kim, and J. J. Song (2015) Enhancing functional expression of heterologous proteins through random substitution of genetic codes in the 5'coding region. Biotechnol. Bioeng. 112: 822–826.CrossRefGoogle Scholar
  6. 6.
    Wu, Y. D., C. Xue, L. J. Chen, W. J. Yuan, and F. W. Bai (2016) Improvements of metabolites tolerance in Clostridium acetobutylicum by micronutrient zinc supplementation. Biotechnol. Bioproc. Eng. 21: 60–67.CrossRefGoogle Scholar
  7. 7.
    Scott, W. G., M. Martick, and Y. I. Chi (2009) Structure and function of regulatory RNA elements: ribozymes that regulate gene expression. Biochim. Biophys. Act. 1789: 634–641.CrossRefGoogle Scholar
  8. 8.
    Dietrich, J. A., A. E. McKee, and J. D. Keasling (2010) Highthroughput metabolic engineering: advances in small–molecule screening and selection. Annu. Rev. Biochem. 79: 563–90.CrossRefGoogle Scholar
  9. 9.
    Zhang, F. and J. Keasling (2011) Biosensors and their applications in microbial metabolic engineering. Trends Microbiol. 19: 323–9.CrossRefGoogle Scholar
  10. 10.
    Eggeling, L., M. Bott, and J. Marienhagen (2015) Novel screening methods––biosensors. Curr. Opin. Biotechnol. 35: 30–6.CrossRefGoogle Scholar
  11. 11.
    Justino, C. I. L., I. D. A. C. Duarte, and T. A. P. Rocha–Santos (2017) Recent progress in biosensors for environmental monitoring: A review. Sensor. 17: 2918.CrossRefGoogle Scholar
  12. 12.
    Lippincott–Schwartz, J. and G. H. Patterson (2003) Development and use of fluorescent protein markers in living cells. Scienc. 300: 87–91.CrossRefGoogle Scholar
  13. 13.
    Shaner, N. C., P. A. Steinbach, and R. Y. Tsien (2005) A guide to choosing fluorescent proteins. Nat. Method. 2: 905–909.CrossRefGoogle Scholar
  14. 14.
    Tsien, R. Y. (2005) Breeding and building molecules to spy on cells and tumors. FEBS Lett. 579: 927–932.CrossRefGoogle Scholar
  15. 15.
    Giepmans, B. N., S. R. Adams, M. H. Ellisman, and R. Y. Tsien (2006) The fluorescent toolbox for assessing protein location and function. Scienc. 312: 217–224.CrossRefGoogle Scholar
  16. 16.
    Ibraheem, A. and R. E. Campbell (2010) Designs and applications of fluorescent protein–based biosensors. Curr. Opin. Chem. Biol. 14: 30–36.CrossRefGoogle Scholar
  17. 17.
    Cheng, F., X. L. Tang, and T. Kardashliev (2018) Transcription factor–based biosensors in high–throughput screening: advances and applications. Biotechnol. J. 13: e1700648CrossRefGoogle Scholar
  18. 18.
    Liu, Y., Y. Liu, and M. Wang (2017) Design, optimization and application of small molecule biosensor in metabolic engineering. Front. Microbiol. 8: 2012.CrossRefGoogle Scholar
  19. 19.
    Kumar, V., S. Ashok, and S. Park (2013) Recent advances in biological production of 3–hydroxypropionic acid. Biotechnol. Adv. 31: 945–961.CrossRefGoogle Scholar
  20. 20.
    Raj, S. M., C. Rathnasingh, J. Jo, and S. Park (2008) Production of 3–hydroxypropionic acid from glycerol by a novel recombinant Escherichia coli BL21 strain. Process Biochem. 43: 1440–1446.CrossRefGoogle Scholar
  21. 21.
    Ko, Y., S. Ashok, E. Seol, S. Ainala, and S. Park (2015) Deletion of putative oxidoreductases from Klebsiella pneumoniae J2B could reduce 1,3–propanediol during the production of 3–hydroxypropionic acid from glycerol. Biotechnol. Bioproc. Eng. 20: 834–843.CrossRefGoogle Scholar
  22. 22.
    Zhou, S., C. Catherine, C. Rathnasingh, A. Somasundar, and S. Park (2013) Production of 3–hydroxypropionic acid from glycerol by recombinant Pseudomonas denitrificans. Biotechnol. Bioeng. 110: 3177–3187.CrossRefGoogle Scholar
  23. 23.
    Rogers, J. K. and G. M. Church (2016) Genetically encoded sensors enable real–time observation of metabolite production. Proc. Natl. Acad. Sci. US. 113: 2388–2393.CrossRefGoogle Scholar
  24. 24.
    Zhou, S., S. K. Ainala, E. Seol, T. T. Nguyen, and S. Park (2015) Inducible gene expression system by 3–hydroxypropionic acid. Biotechnol. Biofuel. 8: 169.CrossRefGoogle Scholar
  25. 25.
    Zhou, S., M. S. Raj, S. Ashok, S. Edwardraja, S. G. Lee, and S. Park (2013) Cloning, expression and characterization of 3–hydroxyisobytyrate dehydrogenase from Pseudomonas denitrificans ATCC 13867. PLoS On. 8: e62666.CrossRefGoogle Scholar
  26. 26.
    Zhang, F. and J. Keasling (2011) Biosensors and their applications in microbial metabolic engineering. Trends Microbiol. 19: 323–329.CrossRefGoogle Scholar
  27. 27.
    Yim, S. H., T. M. Kim, H. J. Hu, J. H. Kim, B. J. Kim, J. Y. Lee, B. G. Han, S. H. Shin, S. H. Jung, and Y. J. Chung (2009) Copy number variations in East–Asian population and their evolutionary and functional implications. Hum. Mol. Gen. ddp564.Google Scholar
  28. 28.
    Rhee, K. Y., D. F. Senear, and G. W. Hatfield (1998) Activation of gene expression by a ligand–induced conformational change of a protein–DNA complex. J. Biol. Chem. 273: 11257–11266.CrossRefGoogle Scholar
  29. 29.
    Wek, R. C. and G. W. Hatfield (1988) Transcriptional activation at adjacent operators in the divergent–overlapping ilvY and ilvC promoters of Escherichia coli. J. Mol. Biol. 203: 643–663.CrossRefGoogle Scholar
  30. 30.
    Erik, K. R. H., P. M. Nigel, and M. Naglis (2017) Characterisation of a 3–hydroxypropionic acid–inducible system from Pseudomonas putida for orthogonal gene expression control in Escherichia coli and Cupriavidusnecator. Sci. Rep. 7: 1724.CrossRefGoogle Scholar
  31. 31.
    Porrúa, O., A. I. Platero, E. Santero, S. G. Del, and F. Govantes (2010) Complex interplay between the LysR–type regulator AtzR and its binding site mediates atzDEF activation in response to two distinct signals. Mol. Microbiol. 76: 331–347.CrossRefGoogle Scholar
  32. 32.
    Galán, B., A. Kolb, J. M. Sanz, J. L. García, and M. A. Prieto (2003) Molecular determinants of the hpa regulatory system of Escherichia coli: the HpaR repressor. Nucleic Acids Res. 31: 6598–6609.CrossRefGoogle Scholar
  33. 33.
    Lee, S. K. and J. D. Keasling (2005) A propionate–inducible expression system for enteric bacteria. Appl. Environ. Microbiol. 71: 6856–6862.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Nam Hoai Nguyen
    • 1
    • 2
  • Jung-Rae Kim
    • 1
  • Sunghoon Park
    • 1
    • 2
  1. 1.School of Chemical and Biomolecular EngineeringPusan National UniversityBusanKorea
  2. 2.School of Energy and Chemical EngineeringUNISTUlsanKorea

Personalised recommendations