Advertisement

Esterification of Secondary Alcohols and Multi-hydroxyl Compounds by Candida antarctica Lipase B and Subtilisin

  • Hee-Jeong Cha
  • Jin-Byung ParkEmail author
  • Seongsoon ParkEmail author
Review Paper
  • 6 Downloads

Abstract

Enzyme-catalyzed esterification of secondary alcohols and multi-hydroxyl compounds is one of the most valuable reactions in organic synthesis. However, it is often difficult to achieve high reaction rates and high regioselectivities with commonly used enzymes such as lipases and proteases. One of the reasons may include bulky substituents of the secondary alcohols and multi-hydroxyl compounds (e.g., carbohydrates and flavonoids). The stereospecificity pocket of lipases, which is considered as a pocket for the binding of medium substituent, might not accept a large substituent due to steric hindrance. Thereby, this review has focused on the discussion about literature survey and structural feature of the most commonly used lipase (i.e., Candida antarctica lipase B (CAL-B)) and serine-protease (i.e., subtilisin) for acylation of secondary alcohols and complex molecules.

Keywords

secondary alcohols esterification CAL-B subtilisin esters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antonopoulou, I., S. Varriale, E. Topakas, U. Rova, P. Christakopoulos, and V. Faraco (2016) Enzymatic synthesis of bioactive compounds with high potential for cosmeceutical application. Appl. Microbiol. Biotechnol. 100: 6519–6543.CrossRefGoogle Scholar
  2. 2.
    de Araújo, M. E. M., Y. E. Franco, M. C. Messias, G. B. Longato, J. A. Pamphile, and P. d. O. Carvalho (2017) Biocatalytic synthesis of flavonoid esters by lipases and their biological benefits. Planta Med. 83: 7–22.Google Scholar
  3. 3.
    Gullón, B., T. A. Lú–Chau, M. T. Moreira, J. M. Lema, and G. Eibes (2017) Rutin: a review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability. Trends Food Sci Technol. 67: 220–235.CrossRefGoogle Scholar
  4. 4.
    Scalbert, A., C. Manach, C. Morand, C. Rémésy, and L. Jiménez (2005) Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. Nutr. 45: 287–306.CrossRefGoogle Scholar
  5. 5.
    Bezbradica, D., M. Crovic, S. J Tanaskovic, N. Lukovic, M. Carevic, A. Milivojevic, and Z. Knezevic–Jugovic (2017) Enzymatic syntheses of esters–green chemistry for valuable food, fuel and fine chemicals. Curr. Org. Chem. 21: 104–138.CrossRefGoogle Scholar
  6. 6.
    Cha, H.–J., E.–J. Seo, J.–W. Song, H.–J. Jo, A. R. Kumar, and J.–B. Park (2018) Simultaneous enzyme/whole–cell biotransformation of C18 ricinoleic acid into (R)–3–hydroxynonanoic acid, 9–hydroxynonanoic acid, and 1, 9–nonanedioic acid. Adv. Synth. Catal. 360: 696–703.CrossRefGoogle Scholar
  7. 7.
    Jeon, E.–Y., J.–H. Seo, W.–R. Kang, M.–J. Kim, J.–H. Lee, D.–K. Oh, and J.–B. Park (2016) Simultaneous enzyme/wholecell biotransformation of plant oils into C9 carboxylic acids. ACS Catal. 6: 7547–7553.CrossRefGoogle Scholar
  8. 8.
    Seo, E.–J., Y. J. Yeon, J.–H. Seo, J.–H. Lee, J. P. Boñgol, Y. Oh, J. M. Park, S.–M. Lim, C.–G. Lee, and J.–B. Park (2018) Enzyme/ whole–cell biotransformation of plant oils, yeast derived oils, and microalgae fatty acid methyl esters into n–nonanoic acid, 9–hydroxynonanoic acid, and 1, 9–nonanedioic acid. Bioresour. Technol. 251: 288–294.CrossRefGoogle Scholar
  9. 9.
    Seo, J.–H., S.–W. Baek, J. Lee, and J.–B. Park (2017) Engineering Escherichia coli BL21 genome to improve the heptanoic acid tolerance by using CRISPR–Cas9 system. Biotechnol. Bioprocess Eng. 22: 231–238.CrossRefGoogle Scholar
  10. 10.
    Yeon, Y. J. and J.–B. Park (2018) Regiospecific conversion of lipids and fatty acids through enzymatic cascade reactions. pp. 139–155. Lipid Modification by Enzymes and Engineered Microbes. Elsevier.Google Scholar
  11. 11.
    Bornscheuer, U. T. and R. J. Kazlauskas (2006) Hydrolases in organic synthesis: regio–and stereoselective biotransformations. John Wiley & Sons.Google Scholar
  12. 12.
    Carvalho, A. C. L. d. M., T. d. S. Fonseca, M. C. d. Mattos, M. d. C. F. d. Oliveira, T. L. G. d. Lemos, F. Molinari, D. Romano, and I. Serra (2015) Recent advances in lipase–mediated preparation of pharmaceuticals and their intermediates. Int. J. Mol. Sci. 16: 29682–29716.CrossRefGoogle Scholar
  13. 13.
    Kim, J. (2017) Surface display of lipolytic enzyme, Lipase A and Lipase B of Bacillus subtilis on the Bacillus subtilis spore. Biotechnol. Bioprocess Eng. 22: 462–468.CrossRefGoogle Scholar
  14. 14.
    Kirdi, R., N. B. Akacha, Y. Messaoudi, and M. Gargouri (2017) Enhanced synthesis of isoamyl acetate using liquid–gas biphasic system by the transesterification reaction of isoamyl alcohol obtained from fusel oil. Biotechnol. Bioprocess Eng. 22: 413–422.CrossRefGoogle Scholar
  15. 15.
    Kourist, R., H. Brundiek, and U. T. Bornscheuer (2010) Protein engineering and discovery of lipases. Eur. J. Lipid. Sci. Technol. 112: 64–74.CrossRefGoogle Scholar
  16. 16.
    Lee, H.–J., M. Haq, P. S. Saravana, Y.–N. Cho, and B.–S. Chun (2017) Omega–3 fatty acids concentrate production by enzymecatalyzed ethanolysis of supercritical CO2 extracted oyster oil. Biotechnol. Bioprocess Eng. 22: 518–528.CrossRefGoogle Scholar
  17. 17.
    Schreck, S. D. and A. M. Grunden (2014) Biotechnological applications of halophilic lipases and thioesterases. Appl. Microbiol. Biotechnol. 98: 1011–1021.CrossRefGoogle Scholar
  18. 18.
    Sheldon, R. A. and P. C. Pereira (2017) Biocatalysis engineering: the big picture. Chem. Soc. Rev. 46: 2678–2691.CrossRefGoogle Scholar
  19. 19.
    Chen, H., X. Meng, X. Xu, W. Liu, and S. Li (2018) The molecular basis for lipase stereoselectivity. Appl. Microbiol. Biotechnol. 102: 3487–3495.CrossRefGoogle Scholar
  20. 20.
    Kazlauskas, R. J. and A. N. Weissfloch (1997) A structure–based rationalization of the enantiopreference of subtilisin toward secondary alcohols and isosteric primary amines. J. Mol. Catal. B Enzym. 3: 65–72.CrossRefGoogle Scholar
  21. 21.
    Schmid, R. D. and R. Verger (1998) Lipases: interfacial enzymes with attractive applications. Angew. Chem. Int. Ed. Engl. 37: 1608–1633.CrossRefGoogle Scholar
  22. 22.
    Kazlauskas, R. J., A. N. Weissfloch, A. T. Rappaport, and L. A. Cuccia (1991) A rule to predict which enantiomer of a secondary alcohol reacts faster in reactions catalyzed by cholesterol esterase, lipase from Pseudomonas cepacia, and lipase from Candida rugosa. J. Org. Chem. 56: 2656–2665.CrossRefGoogle Scholar
  23. 23.
    Orrenius, C., N. Öhrner, D. Rotticci, A. Mattson, K. Hult, and T. Norin (1995) Candida antarctica lipase B catalysed kinetic resolutions: Substrate structure requirements for the preparation of enantiomerically enriched secondary alcanols. Tetrahedron Asymmetr. 6: 1217–1220.CrossRefGoogle Scholar
  24. 24.
    Rotticci, D., F. Hæffner, C. Orrenius, T. Norin, and K. Hult (1998) Molecular recognition of sec–alcohol enantiomers by Candida antarctica lipase B. J. Mol. Catal. B Enzym. 5: 267–272.CrossRefGoogle Scholar
  25. 25.
    Park, A., S. Kim, J. Park, S. Joe, B. Min, J. Oh, J. Song, S. Park, S. Park, and H. Lee (2016) Structural and experimental evidence for the enantiomeric recognition toward a bulky sec–alcohol by Candida antarctica lipase B. ACS Catal. 6: 7458–7465.CrossRefGoogle Scholar
  26. 26.
    Woudenberg–van Oosterom, M., F. van Rantwijk, and R. A. Sheldon (1996) Regioselective acylation of disaccharides in tertbutyl alcohol catalyzed by Candida antarctica lipase. Biotechnol. Bioeng. 49: 328–333.CrossRefGoogle Scholar
  27. 27.
    Rich, J. O., B. A. Bedell, and J. S. Dordick (1995) Controlling enzyme–catalyzed regioselectivity in sugar ester synthesis. Biotechnol. Bioeng. 45: 426–434.CrossRefGoogle Scholar
  28. 28.
    Fersht, A. R., J.–P. Shi, J. Knill–Jones, D. M. Lowe, A. J. Wilkinson, D. M. Blow, P. Brick, P. Carter, M. M. Waye, and G. Winter (1985) Hydrogen bonding and biological specificity analysed by protein engineering. Natur. 314: 235.CrossRefGoogle Scholar
  29. 29.
    Magnusson, A. O., J. C. Rotticci–Mulder, A. Santagostino, and K. Hult (2005) Creating space for large secondary alcohols by rational redesign of Candida antarctica lipase B. ChemBioChem. 6: 1051–1056.CrossRefGoogle Scholar
  30. 30.
    Magnusson, A. O., M. Takwa, A. Hamberg, and K. Hult (2005) An S–selective lipase was created by rational redesign and the enantioselectivity increased with temperature. Angew. Chem. Int. Ed. Engl. 44: 4582–4585.CrossRefGoogle Scholar
  31. 31.
    Jeon, E.–Y., A.–H. Baek, U. T. Bornscheuer, and J.–B. Park (2015) Enzyme fusion for whole–cell biotransformation of long–chain sec–alcohols into esters. Appl. Microbiol. Biotechnol. 99: 6267–6275.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Food Science & EngineeringEwha Womans UniversitySeoulKorea
  2. 2.Institute of Molecular Microbiology and Biosystems EngineeringEwha Womans UniversitySeoulKorea
  3. 3.Department of Chemistry, Center for NanoBio Applied TechnologySungshin Women’s UniversitySeoulKorea

Personalised recommendations