Biotechnology and Bioprocess Engineering

, Volume 24, Issue 1, pp 223–231 | Cite as

Autotrophic Biodiesel Production from the Thermotolerant Microalga Chlorella sorokiniana by Enhancing the Carbon Availability with Temperature Adjustment

  • Yoon Young Choi
  • Min-Eui Hong
  • Won Seok Chang
  • Sang Jun SimEmail author
Research Paper


Chlorella sorokiniana is a thermo-resistant microalga that is widely used for production of biofuel such as biodiesel. When cultured at 37°C under autotrophic conditions, C. sorokiniana showed the highest production of biomass, whereas the cells exhibited the highest production of fatty acids at 30°C. Herein, culture temperature shift was applied to improve autotrophic biodiesel production via the two-stage strategy. In addition, in order to increase biomass production, dissolved inorganic carbon source (mainly bicarbonate ion species), which is essential for photosynthesis, was supplied in the cultures by dissolving the CO2 in alkaline solution. As a result, cell growth increased up to 22% compared to that of the control cells by supplying constant inorganic carbon source into the cultures. The cells cultured under the condition of temperature shift (37°C to 30°C) and bicarbonate solution showed an increase in biodiesel productivity by 31% when compared to the cells that were cultured without such temperature adjustment (37°C to 37°C). In brief, our temperature shift method with bicarbonate buffer system (inorganic carbon supply) will improve biofuel production including biodiesel from C. sorokiniana under autotrophic conditions.


Chlorella sorokiniana thermotolerant microalga autotrophic biodiesel production two-stage strategy temperature shift bicarbonate buffer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Buchmann, N. (1999). Net CO2 and H2O fluxes of terrestrial ecosystems. Global BiogeochemCrossRefGoogle Scholar
  2. 2.
    Goulden, M. L., S. D. Miller, H. R. Da Rocha, M. C. Menton, H. C. de Freitas, A. M. e Silva Figueira, and C. A. D. de Sousa (2004). Diel and seasonal patterns of tropical forest CO2 exchange. Ecol. Appl. 14(sp4): 42–54.CrossRefGoogle Scholar
  3. 3.
    Seth, J. R. and P. P. Wangikar (2015). Challenges and opportunities for microalgae-mediated CO2 capture and biorefinery. Biotechnol, Bioeng.. 112: 1281–1296.CrossRefGoogle Scholar
  4. 4.
    Kumar, V., M. Muthuraj, B. Palabhanvi, A. K. Ghoshal, and D. Das (2014). Evaluation and optimization of two stage sequential in situ transesterification process for fatty acid methyl ester quantification from microalgae. Renew, Energy. 68: 560–569.Google Scholar
  5. 5.
    Kleeff, B. H. A., J. G. Kuenen, and J. J. Heijnen (1993). Continuous measurement of microbial heat production in laboratory fermentors. Biotechnol, Bioeng.. 41: 541–549.CrossRefGoogle Scholar
  6. 6.
    Birol, G., C. Ündey, and A. Çinar (2002). Modular simulation package for fed-batch fermentation: penicillin production. Comput. Chem, Eng.. 26: 1553–1565.Google Scholar
  7. 7.
    Starfelt, F., E. Thorin, E. Dotzauer, and J. Yan (2010). Performance evaluation of adding ethanol production into an existing combined heat and power plant. Bioresour, Technol.. 101: 613–618.Google Scholar
  8. 8.
    de-Bashan, L. E., A. Trejo, V. A. R. Huss, J.-P. Hernandez, and Y. Bashan (2008). Chlorella sorokiniana UTEX 2805, a heat and intense, sunlight-tolerant microalga with potential for removing ammonium from wastewater. Bioresour, Technol.. 99: 4980–4989.Google Scholar
  9. 9.
    Li, T., Y. Zheng, L. Yu, and S. Chen (2013). High productivity cultivation of a heat-resistant microalga Chlorella sorokiniana for biofuel production. Bioresour, Technol.. 131: 60–67.Google Scholar
  10. 10.
    Zheng, Y., T. Li, X. Yu, P. D. Bates, T. Dong, and S. Chen (2013). High-density fed-batch culture of a thermotolerant microalga Chlorella sorokiniana for biofuel production. Appl. Energ. 108, 281–287.CrossRefGoogle Scholar
  11. 11.
    Jeon, H.-S., S. E. Park, B. Ahn, and Y.-K. Kim (2017). Enhancement of biodiesel production in Chlorella vulgaris cultivation using silica nanoparticles. Biotechnol. Bioproc, Eng.. 22: 136–141.Google Scholar
  12. 12.
    Kim, J. S., J. Y. Lee, and T. Lu (2016). Enhanced autotrophic growth of Nannochloris sp. with trona buffer for sustainable carbon recycle. Biotechnol. Bioproc. Eng. 21(3): 422–429.Google Scholar
  13. 13.
    Choi, Y. Y., J. M. Joun, J. Lee, M. E. Hong, H. M. Pham, W. S. Chang, and S. J. Sim (2017). Development of large-scale and economic pH control system for outdoor cultivation of microalgae Haematococcus pluvialis using industrial flue gas. Bioresour, Technol.. 244: 1235–1244.Google Scholar
  14. 14.
    Kang, C. D., J. S. Lee, T. H. Park, and S. J. Sim (2005). Comparison of heterotrophic and photoautotrophic induction on astaxanthin production by Haematococcus pluvialis. Appl. Microbiol, Biotechnol.. 68: 237–241.Google Scholar
  15. 15.
    Hong, M.-E., S. P. Choi, Y.-I. Park, Y.-K. Kim, W. S. Chang, B. W. Kim, and S. J. Sim (2012). Astaxanthin production by a highly photosensitive Haematococcus mutant. Proc, Biochem.. 47: 1972–1979.CrossRefGoogle Scholar
  16. 16.
    Fan, J., Y. Cui, M. Wan, W. Wang, and Y. Li (2014). Lipid accumulation and biosynthesis genes response of the oleaginous Chlorella pyrenoidosa under three nutrition stressors. Biotechnol, Biofuels. 7: 17.CrossRefGoogle Scholar
  17. 17.
    Yoon, S. Y., M. E. Hong, W. S. Chang, and S. J. Sim (2015). Enhanced biodiesel production in Neochloris oleoabundans by a semi-continuous process in two stage photobioreactors. Bioproc. Biosyst, Eng.. 38: 1415–1421.Google Scholar
  18. 18.
    Aishvarya, V., N. Pradhan, R. R. Nayak, and L. B. Sukla (2012). Enhanced inorganic car-bon uptake by Chlorella sp. IMMTCC-2 under autotrophic conditions for lipid pro-duction and CO2 sequestration. J. Appl, Phycol.. 24: 1455–1463.CrossRefGoogle Scholar
  19. 19.
    Hong, M. E., Y. Y. Choi, and S. J. Sim (2016). Effect of red cyst cell inoculation and iron (II) supplementation on autotrophic astaxanthin production by Haematococcus pluvialis under outdoor summer conditions. J, Biotechnol.. 218: 25–33.Google Scholar
  20. 20.
    Kim, J. Y. H., H. S. Kwak, Y. J. Sung, H. I. Choi, M. E. Hong, H. S. Lim, J.-H. Lee, S. Y. Lee, and S. J. Sim (2016). Microfluidic high-throughput selection of microalgal strains with superior photosynthetic productivity using competitive phototaxis, Scientific Reports. 6: 21155.CrossRefGoogle Scholar
  21. 21.
    Santos, A. M., M. Janssen, P. P. Lamers, W. A. C. Evers, and R. H. Wijffels (2012). Growth of oil accumulating microalga Neochloris oleoabundans under alkaline-saline conditions. Bioresour, Technol.. 104: 593–599.Google Scholar
  22. 22.
    Chiu, S.-Y., C.-Y. Kao, T.-T. Huang, C.-J. Lin, S.-C. Ong, C.-D. Chen, J.-S. Chang, and C.-S. Lin (2011). Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures. Bioresour, Technol.. 102: 9135–9142.Google Scholar
  23. 23.
    Zhang, Y. M., H. Chen, C. L. He, and Q. Wang (2013). Nitrogen starvation induced oxidative stress in an oil-producing green alga Chlorella sorokiniana C3. PLoS One 8: e69225.CrossRefGoogle Scholar
  24. 24.
    Garcia-Mendoza, E., H. C. Matthijs, H. Schubert, and L. R. Mur (2002). Non-photochemical quenching of chlorophyll fluorescence in Chlorella fusca acclimated to constant and dynamic light conditions, Photosynthesis Research. 74: 303.CrossRefGoogle Scholar
  25. 25.
    Yamano T. and H. Fukuzawa (2009). Carbon-concentrating mechanism in a green alga, Chlamydomonas reinhardtii, revealed by transcriptome analysis. J, Basic Microbiol.. 49: 42–51.CrossRefGoogle Scholar
  26. 26.
    Markelova A. G., M. P. Sinetova, E. V. Kupriyanova, and N. A. Pronina (2009). Distribution and functional role of carbonic anhydrase Cah3 associated with thylakoid membranes in the chloroplast and pyrenoid of Chlamydomonas reinhardtii. Russ. J, Plant Physiol.. 56: 76–768.Google Scholar
  27. 27.
    Gardner, R. D., E. Lohman, R. Gerlach, K. E. Cooksey, and B. M. Peyton (2013). Comparison of CO2 and bicarbonate as inorganic carbon sources for triacylglycerol and starch accumulation in Chlamydomonas reinhardtii. Biotechnol, Bioeng.. 110: 87–96.CrossRefGoogle Scholar
  28. 28.
    Li, T., M. Gargouri, J. Feng, J.-J. Park, D. Gao, C. Miao, T. Dong, D. R. Gang, and S. Chen (2015). Regulation of starch and lipid accumulation in a microalga Chlorella sorokiniana. Bioresour, Technol.. 180: 250–257.CrossRefGoogle Scholar
  29. 29.
    Rizwan, M., G. Mujtaba, and K. Lee (2017). Effects of iron sources on the growth and lipid/carbohydrate production of marine microalga Dunaliella tertiolecta. Biotechnol. Bioproc, Eng.. 22: 68–75.Google Scholar
  30. 30.
    Hong, S.-J., Y. S. Park, M.-A. Han (2017). Enhanced production of fatty acids in three strains of microalgae using a combination of nitrogen starvation and chemical inhibitors of carbohydrate synthesis Biotechnol. Bioproc, Eng.. 22: 60–67.Google Scholar
  31. 31.
    Hong, M. E., S. K. Hwang, W. S. Chang, B. W. Kim, J. Lee, and S. J. Sim (2015). Enhanced autotrophic astaxanthin production from Haematococcus pluvialis under high temperature via heat stress-driven Haber-Weiss reaction. Appl. Microbiol, Biotechnol.. 99: 5203–5215.Google Scholar
  32. 32.
    Canakci, M. and J. V. Gerpen (2001). Biodiesel production from oils and fats with high free fatty acids. T, A.S.A.B.E.. 44: 1429–1436.Google Scholar
  33. 33.
    Seto, A., H. Wang, and C. Hesseltine (1984). Culture conditions affect eicosapentaenoic acid content of Chlorella minutissima. J. Am. Oil Chem, Soc.. 61: 892–894.Google Scholar
  34. 34.
    Hur, B. K., D. W. Cho, H. J. Kim, C. I. Park, and H. J. Suh (2002). Effect of culture conditions on growth and production of docosahexaenoic acid (DHA) using Thraustochytrium aureum ATCC 34304. Biotechnol, Bioprocess Eng.. 7: 10–15.CrossRefGoogle Scholar
  35. 35.
    Converti, A., A. A. Casazza, E. Y. Ortiz, P. Perego, and M. De. Borghi (2009). Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem. Eng, Process.: Process Intensific.. 48: 1146–1151.Google Scholar
  36. 36.
    Xin, L., H. Hong-Ying, and Z. Yu-Ping (2011). Growth and lipid accumulation properties of a freshwater microalga Scenedesmus sp. under different cultivation temperature. Bioresour, Technol.. 102: 3098–3102.Google Scholar
  37. 37.
    Lynch, D. V. and G. A. Thompson (1982). Low temperature-induced alterations in the chloroplast and microsomal-membranes of Dunaliella salina, Plant Physiol.. 69: 1369–1375.CrossRefGoogle Scholar
  38. 38.
    Israelachvili, J. N., S. Marcelja, and R. G. Horn (1980). Physical principles of membrane organization. Q. Rev, Biophys.. 13: 121–200.Google Scholar
  39. 39.
    Chankova, S., Z. Mitrovska, D. Miteva, Y. P. Oleskina, and N. P. Yurina (2013). Heat shock protein HSP70B as a marker for genotype resistance to environmental stress in Chlorella species from contrasting habitats, Gene. 516: 184–189.CrossRefGoogle Scholar
  40. 40.
    Nakamoto, H. and D. Honma (2006). Interaction of a small heat shock protein with light harvesting cyanobacterial phycocyanins under stress conditions, FEBS Letters. 580: 3029–3034.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer 2019

Authors and Affiliations

  • Yoon Young Choi
    • 1
  • Min-Eui Hong
    • 1
  • Won Seok Chang
    • 2
  • Sang Jun Sim
    • 1
    Email author
  1. 1.Department of Chemical and Biological EngineeringKorea UniversitySeoulKorea
  2. 2.Research InstituteKorea District Heating Corp.YonginKorea

Personalised recommendations