Advertisement

Biotechnology and Bioprocess Engineering

, Volume 23, Issue 6, pp 655–661 | Cite as

Function and Application Analysis of Ac132 Protein in Autographa californica Multiple Nucleopolyhedrovirus

  • Yueyou Peng
  • Aihua Liang
  • Yuejun FuEmail author
Research Paper
  • 10 Downloads

Abstract

Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is used as bac-to-bac eukaryotic protein expression system and biopesticide. However, AcMNPV isn’t widely used in protein expression system and biological control due to some drawbacks and it’s required to understand the function of AcMNPV genes comprehensively in the infection process. Ac132 is an improtant component of the budded virus (BV) nucleocapsid of AcMNPV and the function of Ac132 in regulating progeny virus generation is still unclear. In this study, the recombinant AcMNPV-Ac132-EGFP was constructed. Virus propagation assay indicated that overexpression of Ac132 could improve progeny virus production. Moreover, fluorescent microscope and western blot analysis showed AcMNPV-Ac132-EGFP could accelerate the aggregation of F-actin in the nucleus and delay the evacuation process. In addition, AcMNPV-Ac132-EGFP boosted the utilization of glucose in Sf9 cells at the aspect of energy metabolism. These results demonstrated that Ac132 played important roles in progeny virus production, F-actin formation, nucleocapsid transportion, and glucose metabolism in Sf9 cells, which provided an improved bac-to-bac eukaryotic protein expression system and biopesticide.

Keywords

Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) Spodoptera frugiperda 9 cell Ac132 F-actin cell metabolism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ayres, M. D., S. C. Howard, J. Kuzio, M. Lopez–Ferber, and R. D. Possee (1994) The complete DNA sequence of Autographa californica nuclear polyhedrosis virus. Virology 202: 586–605.CrossRefGoogle Scholar
  2. 2.
    Wang, R., F. Deng, D. Hou, Y. Zhao, L. Guo, H. Wang, and Z. Hu (2010) Proteomics of the Autographa californica nucleopolyhedrovirus buddedvirions. J. Virol. 84: 7233–7242.CrossRefGoogle Scholar
  3. 3.
    Braunagel, S. C., W. K. Russell, G. Rosas–Acosta, D. H. Russell, and M. D. Summers (2003) Determination of the protein composition of the occlusion–derived virus of Autographa californica nucleopolyhedrovirus. Proc. Natl. Acad. Sci. USA 100: 9797–9802.CrossRefGoogle Scholar
  4. 4.
    Chen, Y. R., S. Zhong, Z. Fei, Y. Hashimoto, J. Z. Xiang, S. Zhang, and G. W. Blissard (2013) The transcriptome of the baculovirus Autographa californicamultiple nucleopolyhedrovirus in Trichoplusia ni cells. J. Virol. 87:6391–6405.CrossRefGoogle Scholar
  5. 5.
    Rohrmann, G. F. and M. D. Bethesda (2013) Baculovirus molecular biology, 3rd ed. National Center for Biotechnology Information, National Library of Medicine.Google Scholar
  6. 6.
    Miele, S. A., M. J. Garavaglia, M. N. Belaich, and P. D. Ghiringhelli (2011) Baculovirus: molecular insights on their diversity and conservation. Int. J. Evol. Biol. 2011:379424.CrossRefGoogle Scholar
  7. 7.
    Yang, M., S. Wang, X. L. Yue, and L. L. Li (2014) Autographa californica multiple nucleopolyhedrovirus orf132 encodes a nucleocapsid–associated protein required for budded–virus and multiply enveloped occlusion–derived virus production. J. Virol. 88: 12586–12598.CrossRefGoogle Scholar
  8. 8.
    Fang, Z., C. Li, W. Wu, M. Yuan, and K. Yang (2016) The Autographa californica multiple nucleopolyhedro virus Ac132 plays a role in nuclear entry. J. Gen. Virol. 97:3030–3038.CrossRefGoogle Scholar
  9. 9.
    Young, J. C., E. A. MacKinnon, and P. Faulkner (1993) The architecture of the virogenic stroma in isolated nuclei of Spodoptera frugiperda cells in vitro infected by Autographa californica nuclear polyhedrosis virus. J. Struct. Biol. 110: 141–153.CrossRefGoogle Scholar
  10. 10.
    Fu, Y. J., T. T. Lin, A. H. Liang, and F. Hu (2016) Effects of recombinant baculovirus AcMNPV–BmK IT on the formation of early cables and nuclear polymerization of actin in Sf9 cells. Cytotechnology 68: 381–387.CrossRefGoogle Scholar
  11. 11.
    Au, S., W. Wu, L. Zhou, D. A. Theilmann, and N. Panté (2016) A new mechanism for nuclear import by actin–based propulsion used by a baculovirus nucleocapsid. J. Cell Sci. 129: 2905–2911.CrossRefGoogle Scholar
  12. 12.
    Hepp, S. E., G. M. Borgo, S. Ticau, T. Ohkawa, and M. D. Welch (2018) Baculovirus AC102 is a nucleocapsid protein that is crucial for nuclear actin polymerization and nucleocapsid morphogenesis. J. Virol. 92: 11–17.CrossRefGoogle Scholar
  13. 13.
    Zhang, Y., X. Hu, J. Mu, Y. Hu, Y. Zhou, H. Zhao, C. Wu, R. Pei, J. Chen, X. Chen, and Y. Wang (2018) Ac102 participates in nuclear actin polymerization by modulating BV/ODV–C42 Ubiquitination during Autographa californica multiple nucleopolyhedrovirus infection. J Virol. 92:12–14.Google Scholar
  14. 14.
    Xiao, W., Y. Yang, Q. Weng, T. Lin, M. Yuan, K. Yang, and Y. Pang (2009) The role of the PI3K–Akt signal transduction pathway in Autographa californica multiple nucleopolyhedrovirus infection of Spodoptera frugiperda cells. Virology 391: 83–89.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of BiotechnologyShanxi UniversityTaiyuanChina
  2. 2.College of Life ScienceShanxi UniversityTaiyuanChina

Personalised recommendations