Apolipoprotein(a) Kringles for Gene Therapy of Colon Cancer

  • Kyuhyun Lee
  • Sung-Tae Yun
  • Byung-Yoon Ahn
  • Eui-Cheol JoEmail author
Research Paper


Lipoprotein(a) is a proatherogenic, prothrombotic lipoprotein that comprises apolipoprotein(a) (apo(a)) tethered to apolipoprotein B-100, which surrounds a lowdensity lipoprotein (LDL) moiety. Despite its molecular similarity to plasminogen, apo(a) plays distinct physiological and pathological roles both in vitro and in vivo. In this study, we examined possible target molecules and the therapeutic potential of gene therapy using a recombinant adeno-associated virus (AAV) carrying the LK8 and LK68 (LKs) genes, which encode the cryptic kringle fragment of apo(a) (rAAV-LK), for the treatment of colon carcinoma. The results showed that AAV-produced LKs inhibited the migration of HUVECs induced by different angiogenic factors in a dose-dependent manner, and the potency was >1,000-fold than that of recombinant LK8 and LK68 proteins. A single intramuscular injection of rAAV-LKs (1 × 109 infectious particles (IP)/mouse) significantly inhibited the growth of subcutaneously transplanted LS174T tumors and reduced the number of tumor nodules in metastasized livers. Immunohistochemical analysis showed that AAV-produced LKs inhibited microvessel formation within the tumor mass, thereby inducing apoptosis in the tumor periphery, leading to the suppression of both tumor growth and metastasis. Taken together, these results suggest that AAV-produced LKs are multi-potent angiogenesis inhibitors that suppress the growth and metastasis of colon carcinoma.


kringle fragment apolipoprotein (a) antiangiogenesis adeno-associated virus colon cancer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ferretti, G., T. Bacchetti, T. P. Johnston, M. Banach, M. Pirro, and A. Sahebkar (2018) Lipoprotein(a): A missing culprit in the management of athero-thrombosis? J. Cell Physiol. 233: 2966–2981.CrossRefGoogle Scholar
  2. 2.
    McLean, J. W., J. E. Tomlinson, W. J. Kuang, D. L. Eaton, E. Y. Chen, G. M. Fless, A. M. Scanu, and R. M. Lawn (1987) cDNA sequence of human apolipoprotein (a) is homologous to plasminogen. Nature 330: 132–137.CrossRefGoogle Scholar
  3. 3.
    Hoover-Plow, J., L. A. Miles, G. M. Fless, A. M. Scanu, and E. F. Plow (1993) Comparison of the lysine binding functions of lipoprotein(a) and plasminogen. Biochemistry 49: 13681–13687.CrossRefGoogle Scholar
  4. 4.
    Sha, J., B. Mccullogugh, E. Hart, F. Nassir, N. O. Davidson, and J. Hoover-Plow (2005) Apo(a) promotes thrombosis in a vascular injury model by a mechanism independent of plasminogen. J. Thromb. Haemost. 3: 2281–2289.CrossRefGoogle Scholar
  5. 5.
    Chabowski, M., A. Nowak, J. Grzegrzolka, A. Piotrowska, D. Janczak, and P. Dziegiel (2018) Comparison of microvessel density using Nestin and CD34 in colorectal cancer. Anticancer Res. 38: 3889–3895.CrossRefGoogle Scholar
  6. 6.
    De Palma, M., D. Biziato, and T. V. Petrova (2017) Microenvironmental regulation of tumour angiogenesis Nat. Rev. Cancer 17: 457–474.CrossRefGoogle Scholar
  7. 7.
    Novellasdemunt, L., P. Antas, and V. S. W. Li (2015) Targeting Wnt signaling in colorectal cancer. A review in the theme: cell signaling: proteins, pathways and mechanisms. Am. J. Physiol. Cell Physiol. 309: C511–C521.CrossRefGoogle Scholar
  8. 8.
    Ferrara, N. and A. P. Adamis (2016) Ten years of anti-vascular endothelial growth factor therapy. Nat. Rev. Drug Discov. 15: 385–403.CrossRefGoogle Scholar
  9. 9.
    Cao, Y., R. Cao, and N. Veitonmäki (2002) Kringle structures and antiangiogenesis. Curr. Med. Chem. Anticancer Agents 2: 667–681.CrossRefGoogle Scholar
  10. 10.
    Grant, M. A. and R. Kalluri (2005) Structural basis for the functions of endogenous angiogenesis inhibitors. Cold Spring Harb. Symp. Quant. Biol. 70: 399–417.CrossRefGoogle Scholar
  11. 11.
    Yu, H. K., J. S. Kim, H. J. Lee, J. H. Ahn, S. K. Lee, S. W. Hong, and Y. Yoon (2004) Suppression of colorectal cancer liver metastasis and extension of survival by expression of apolipoprotein (a) kringles. Cancer Res. 64: 7092–7098.CrossRefGoogle Scholar
  12. 12.
    Lee, K., S. T. Yun, Y. G. Kim, Y. Yoon, and E.–C. Jo (2006) Adeno-associated virus-mediated expression of apolipoprotein (a) kringles suppresses hepatocellular carcinoma growth in mice. Hepatology 43: 1063–1073.CrossRefGoogle Scholar
  13. 13.
    Lippi, G., M. Franchini, G. L. Salvagno, and G. C. Guidi (2007) Lipoprotein[a] and cancer: Anti-neoplastic effect besides its cardiovascular potency. Cancer Treat. Rev. 33: 427–436.CrossRefGoogle Scholar
  14. 14.
    Liu, L., M. B. Boffa, and M. L. Koschinsky (2013) Apolipoprotein( a) inhibits in vitro tube formation in endothelial cells: identification of roles for Kringle V and the plasminogen activation system. PLoS One 8: e52287.CrossRefGoogle Scholar
  15. 15.
    Ahn, J. H., H. K. Yu, H. J. Lee, S. W. Hong, S. J. Kim, and J. S. Kim (2014) Suppression of colorectal cancer liver metastasis by apolipoprotein(a) kringle V in a nude mouse model through the induction of apoptosis in tumor-associated endothelial cells. PLoS One 9: e93794.CrossRefGoogle Scholar
  16. 16.
    Park, J. Y., B. P. Lim, K. Lee, Y. G. Kim, and E.-C. Jo (2006) Scalable production of adeno-associated virus type 2 vectors via suspension transfection. Biotechnol. Bioeng. 94: 416–430.CrossRefGoogle Scholar
  17. 17.
    Naik, M. U. and U. P. Naik (2006) Junctional adhesion molecule-A-induced endothelial cell migration on vitronectin is integrin αvß3 specific. J. Cell Sci. 119: 490–499.CrossRefGoogle Scholar
  18. 18.
    Oh, M., Y. J. Kim, Y. J. Son, H. S. Yoo, and J. H. Park (2017) Promotive effects of human induced pluripotent stem cellconditioned medium on the proliferation and migration of dermal fibroblasts. Biotechnol. Bioprocess Eng. 22: 561–568.CrossRefGoogle Scholar
  19. 19.
    Lee, H., D. Kim, S. M. Lim, and S. Kwon (2017) Rice callus extracts for enhancing skin wound healing. Biotechnol. Bioprocess Eng. 22: 352–358.CrossRefGoogle Scholar
  20. 20.
    Pang, X., Z. Yi, X. Zhang, B. Sung, W. Qu, X. Lian, B. B. Aggarwal, and M. Liu (2009) Acetyl-11-keto-β-boswellic acid inhibits prostate tumor growth by suppressing vascular endothelial growth factor receptor 2–mediated angiogenesis. Cancer Res. 69: 5893–5900.CrossRefGoogle Scholar
  21. 21.
    Kim, J. S., H. K. Yu, J. H. Ahn, H. J. Lee, S. W. Hong, K. H. Jung, S. I. Chang, Y. K. Hong, Y. A. Joe, S. M. Byun, S. K. Lee, S. I. Chung, and Y. Yoon (2004) Human apolipoprotein (a) kringle V inhibits angiogenesis in vitro and in vivo by interfering with the activation of focal adhesion kinases. Biochem. Biophys. Res. Commun. 313: 534–540.CrossRefGoogle Scholar
  22. 22.
    Kim, J. S., J. H. Chang, H. K. Yu, J. H. Ahn, J. S. Yum, S. K. Lee, K. H. Jung, D. H. Park, Y. Yoon, S. M. Byun, and S. I. Chung (2003) Inhibition of angiogenesis and angiogenesis-dependent tumor growth by the cryptic kringle fragments of human apolipoprotein (a). J. Biol. Chem. 278: 29000–29008.CrossRefGoogle Scholar
  23. 23.
    Pàez-Ribes, M., E. Allen, J. Hudock, T. Takeda, H. Okuyama, F. Viñals, M. Inoue, G. Bergers, D. Hanahan, and O. Casanovas (2009) Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15: 220–231.CrossRefGoogle Scholar
  24. 24.
    Ebos, J. M. L., C. R. Lee, W. Cruz-Munoz, G. A. Bjarnason, J. G. Christensen, and R. S. Kerbel (2009) Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15: 232–239.CrossRefGoogle Scholar
  25. 25.
    Ma, S., S. Pradeep, W. Hu, D. Zhang, R. Coleman, and A. Sood (2018) The role of tumor microenvironment in resistance to antiangiogenic therapy. F1000Resaerch 7: 326.CrossRefGoogle Scholar
  26. 26.
    Roswall, P., M. Bocci, M. Bartoschek, H. Li, G. Kristiansen, S. Jansson, S. Lehn, J. Sjölund, S. Reid, C. Larsson, P. Eriksson, C. Anderberg, E. Cortez, L. H. Saal, C. Orsmark-Pietras, E. Cordero, B. K. Haller, J. Häkkinen, I. J. G. Burvenich, E. Lim, A. Orimo, M. Höglund, L. Rydén, H. Moch, A. M. Scott, U. Eriksson, and K. Pietras (2018) Microenvironmental control of breast cancer subtype elicited through paracrine platelet-derived growth factor-CC signaling. Nat. Med. 24: 463–473.CrossRefGoogle Scholar
  27. 27.
    Hosaka, K., Y. Yang, M. Nakamura, P. Andersson, X. Yang, Y. Zhang, T. Seki, M. Scherzer, O. Dubey, X. Wang, and Y. Cao (2018) Dual roles of endothelial FGF-2-FGFR1-PDGF-BB and perivascular FGF-2-FGFR2-PDGFRβ signaling pathways in tumor vascular remodeling. Cell Discov. 4: 3.CrossRefGoogle Scholar
  28. 28.
    Dewerchin, M. and P. Carmeliet (2014) Placental growth factor in cancer. Expert Opin. Ther. Targets 18: 1339–1354.CrossRefGoogle Scholar
  29. 29.
    Li, C., T. Liu, A. V. Bazhin, and Y. Yang (2017) The sabotaging role of myeloid cells in anti-angiogenic therapy: Coordination of angiogenesis and immune suppression by hypoxia. J. Cell. Physiol. 232: 2312–2322.CrossRefGoogle Scholar
  30. 30.
    L. Liu, M. B. Boffa, and M. L. Koschinsky (2013) Apolipoprotein (a) inhibits in vitro tube formation in endotherlial cells: identification of roles for Kringle V and the plasminogen activation system. PLoS One 8(1): e52287.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Kyuhyun Lee
    • 1
  • Sung-Tae Yun
    • 2
  • Byung-Yoon Ahn
    • 3
  • Eui-Cheol Jo
    • 4
    Email author
  1. 1.PL Unit, Corporate DevelopmentGC PharmaYonginKorea
  2. 2.Cell Engineering, R&D CenterGC PharmaYonginKorea
  3. 3.Department of Life SciencesKorea UniversitySeoulKorea
  4. 4.Mogam Institute for Biomedical ResearchYonginKorea

Personalised recommendations