Electrochemical Dopamine Biosensor Composed of Silver Encapsulated MoS2 Hybrid Nanoparticle

  • Jae-Wook Shin
  • Jinho Yoon
  • Minkyu Shin
  • Jeong-Woo ChoiEmail author
Research Paper


Dopamine is an important neurotransmitter in central nervous system as an indicator of several neurological disorders such as Parkinson’s disease. The accurate monitoring of dopamine level is the significant factor for prevention and diagnosis of various neurological disorders. Commonly used metal nanoparticles such as gold and platinum for electrochemical dopamine detection have limitations such as low sensitivity and low linearity at low concentration of dopamine. In this study, for the first time, silver encapsulated MoS2 (Ag/MoS2) hybrid nanoparticle was developed and spin-coated on the indium tin oxide (ITO) electrode to enhance the electrochemical signal for dopamine detection. This newly developed biosensor induced the well-orientation of Ag/MoS2 hybrid nanoparticle, high reproducibility and high sensitivity at low dopamine concentrations compared to the previously reported biosensors. Thus, our newly fabricated electrochemical biosensor composed of Ag/MoS2 hybrid nanoparticle can be applied to monitor the level of dopamine accurately for diagnosis and prevention of various neurological disorders with the electrochemical signal enhancement.


Ag nanoparticle MoS2 Ag/MoS2 hybrid nanoparticle dopamine electrochemical signal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12257_2018_350_MOESM1_ESM.pdf (183 kb)
Supplementary material, approximately 183 KB.


  1. 1.
    Schapira, A. H. V. (2002) Dopamine agonists and neuroprotection in Parkinson’s disease. Eur. J. Neurol. 9: 7–14.CrossRefGoogle Scholar
  2. 2.
    Gubernator, N. G., H. Zhang, R. G. W. Staal, E. V. Mosharov, D. B. Pereira, M. Yue, V. Balsanek, P. A. Vadola, B. Mukherjee, R. H. Edwards, D. Sulzer, and D. Sames (2009) Fluorescent false neurotransmitters visualize dopamine release from individual presynaptic terminals. Science 324: 1441–1444.CrossRefGoogle Scholar
  3. 3.
    Rezaei, B., M. K. Boroujeni, and A. A. Ensafi (2015) Fabrication of DNA, o-phenylenediamine, and gold nanoparticle bioimprinted polymer electrochemical sensor for the determination of dopamine. Biosens. Bioelectron. 66: 490–496.CrossRefGoogle Scholar
  4. 4.
    Shah, S. (2016) The nanomaterial toolkit for neuroengineering. Nano Convergence 3: 25.CrossRefGoogle Scholar
  5. 5.
    Li, D., P. C. Sham, M. J. Owen, and L. He (2006) Meta-analysis shows significant association between dopamine system genes and attention deficit hyperactivity disorder (ADHD). Hum. Mol. Genet. 15: 2276–2284.CrossRefGoogle Scholar
  6. 6.
    Dougherty, D. D., A. A. Bonab, T. J. Spencer, S. L. Rauch, B. K. Madras, and D. A. Fischman (1999) Dopamine transporter density in patients with attention deficit hyperactivity disorder. Lancet 354: 2132–2133.CrossRefGoogle Scholar
  7. 7.
    Nichkova, M., P. M. Wynveen, D. T. Marc, H. Huisman, and G. H. Kellermann (2013) Validation of an ELISA for urinary dopamine: applications in monitoring treatment of dopaminerelated disorders. J. Neurochem. 125: 724–735.CrossRefGoogle Scholar
  8. 8.
    Muzzi, C., E. Bertocci, L. Terzuoli, B. Porcelli, I. Ciari, R. Pagani, and R. Guerranti (2008) Simultaneous determination of serum concentrations of levodopa, dopamine, 3-O-methyldopa and alphamethyldopa by HPLC. Biomed. Pharmacother. 62: 253–258.CrossRefGoogle Scholar
  9. 9.
    Cudjoe, E. and J. Pawliszyn (2014) Optimization of solid phase microextraction coatings for liquid chromatography mass spectrometry determination of neurotransmitters. J. Chromatogr. A 1341: 1–7.CrossRefGoogle Scholar
  10. 10.
    Moghadam, M. R., S. Dadfarnia, A. M. H. Shabani, and P. Shahbazikhah (2011) Chemometric-assited kinetic-spectrophotometric method for simultaneous determination of ascorbic acid, uric acid, and dopamine. Anal. Biochem. 410: 289–295.CrossRefGoogle Scholar
  11. 11.
    Musso, N. R., C. Vergassola, A. Pende, and G. Lotti (1989) Reversed-phase HPLC separation of plasma norepinephrine, epinephrine, and dopamine, with three-electrode coulometric detection. Clin. Chem. 35: 1975–1977.Google Scholar
  12. 12.
    Han, H. S., H. K. Lee, J.-M. You, H. Jeong, and S. Jeon (2014) Electrochemical biosensor for simultaneous determination of dopamine and serotonin based on electrochemically reduced GOporphyrin. Sens. Actuator B-Chem. 190: 886–895.CrossRefGoogle Scholar
  13. 13.
    Qian, T., C. Yu, X. Zhou, P. Ma, S. Wu, L. Xu, and J. Shen (2014) Ultrasensitive dopamine sensor based on novel molecularly imprinted polypyrrole coated carbon nanotubes. Biosens. Bioelectron. 58: 237–241.CrossRefGoogle Scholar
  14. 14.
    Rahman, S. F., K. Min, S.-H. Park, J.-H. Park, J. C. Yoo, and D.-H. Park (2016) Selective determination of dopamine with an amperometric biosensor using electrochemically pretreated and activated carbon/tyrosinase/Nafion®-modified glassy carbon electrode. Biotechnol. Bioprocess Eng. 21: 627–633.CrossRefGoogle Scholar
  15. 15.
    Sun, C.-L., H.-H. Lee, J.-M. Yang, and C.-C. Wu (2011) The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites. Biosens. Bioelectron. 26: 3450–3455.CrossRefGoogle Scholar
  16. 16.
    Lee, T., A. K. Yagati, F. Pi, A. Sharma, J.-W. Choi, and P. Guo (2015) Construction of RNA-quantum dot chimera for nanoscale resistive biomemory application. ACS Nano 9: 6675–6682.CrossRefGoogle Scholar
  17. 17.
    Lee, T., S.-U. Kim, J. Min, and J.-W. Choi (2010) Multilevel biomemory device consisting of recombinant azurin/cytochrome c. Adv. Mater. 22:510–514.CrossRefGoogle Scholar
  18. 18.
    Meyyappan, M. (2015) Nano biosensors for neurochemical monitoring. Nano Convergence 2: 18.CrossRefGoogle Scholar
  19. 19.
    Yang, Y. J. and W. Li (2014) CTAB functionalized graphene oxide/multiwalled carbon nanotube composite modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite. Biosens. Bioelectron. 56: 300–306.CrossRefGoogle Scholar
  20. 20.
    Dalmia, A., C. C. Liu, and R. F. Savinell (1997) Electrochemical behavior of gold electrodes modified with self-assembled monolayers with an acidic end group for selective detection of dopamme. J. Electroanal. Chem. 430: 205–214.CrossRefGoogle Scholar
  21. 21.
    Guo, S., D. Wen, Y. Zhai, S. Dong, and E. Wang (2010) Platinum nanoparticle ensemble-on-graphene hybrid nanosheet: one-pot, rapid synthesis, and used as new electrode material for electrochemical sensing. ACS Nano 4: 3959–3968.CrossRefGoogle Scholar
  22. 22.
    Lee, T., T.-H. Kim, J. Yoon, Y.-H. Chung, J. Y. Lee, and J.-W. Choi (2016) Investigation of hemoglobin/gold nanoparticle heterolayer on micro-gap for electrochemical biosensor application. Sensors 16: 660.CrossRefGoogle Scholar
  23. 23.
    Li, S.-M., Y.-S. Wang, S.-T. Hsiao, W.-H. Liao, C.-W. Lin, S.-Y. Yang, H.-W. Tien, C.-C. M. Ma, and C.-C. Hu (2015) Fabrication of a silver nanowire-reduced graphene oxide-based electrochemical biosensor and its enhanced sensitivity in the simultaneous determination of ascorbic acid, dopamine, and uric acid, J. Mater. Chem. C. 3: 9444.Google Scholar
  24. 24.
    Zeis, R., A. Mathur, G. Fritz, J. Lee, and J. Erlebacher (2007) Platinum-plated nanoporous gold: an efficient, low Pt loading electrocatalyst for PEM fuel cells. J. Power Sources 165: 65–72.CrossRefGoogle Scholar
  25. 25.
    Chen, A. and S. Chatterjee (2013) Nanomaterials based electrochemical sensors for biomedical applications. Chem. Soc. Rev. 42: 5425–5438.CrossRefGoogle Scholar
  26. 26.
    Wang, X., F. Nan, J. Zhao, T. Yang, T. Ge, and K. Jiao (2015) A label-free ultrasensitive electrochemical DNA sensor based on thin-layer MoS2 nanosheets with high electrochemical activity. Biosens. Bioelectron. 64: 386–391.CrossRefGoogle Scholar
  27. 27.
    Xiao, W., W. Zhou, T. Feng, Y. Zhang, H. Liu, and L. Tian (2016) Simple synthesis of molybdenum disulfide/reduced graphene oxide composite hollow microspheres as supercapacitor electrode material. Materials 9: 738.CrossRefGoogle Scholar
  28. 28.
    Yoon, J., T. Lee, G. B. Bapurao, J. Jo, B.-K. Oh, and J.-W. Choi (2017) Electrochemical H2O2 biosensor composed of myoglobin on MoS2 nanoparticle-graphene oxide hybrid structure. Biosens. Bioelectron. 93: 14–20.CrossRefGoogle Scholar
  29. 29.
    Mohammadniaei, M., J. Yoon, T. Lee, B. G. Bharate, J. Jo, D. Lee, and J.-W. Choi (2018) Electrochemical biosensor composed of silver ion-mediated dsDNA on Au-encapsulated Bi2Se3 nanoparticles for the detection of H2O2 released from breast cancer cells. Small 14: 1703970.Google Scholar
  30. 30.
    Zhou, L., H. Zhang, H. Bao, G. Liu, Y. Li, and W. Cai (2018) Decoration of Au nanoparticles on MoS2 nanospheres: From janus to core/shell structure. J. Phys. Chem. C 122: 8628–8636.CrossRefGoogle Scholar
  31. 31.
    Shin, J.-W., K.-J. Kim, J. Jo, W. A. El-Said, and J.-W. Choi (2017) Silver nanoparticle modified electrode covered by graphene oxide for the enhanced electrochemical detection of dopamine. Sensors 17: 2771.CrossRefGoogle Scholar
  32. 32.
    Park, S.-K., S.-H. Yu, S. Woo, J. Ha, J. Shin, Y.-E. Sung, and Y. Piao (2012) A facile and green strategy for the synthesis of MoS2 nanospheres with excellent Li-ion storage properties. Crystengcomm 14: 8323–8325.CrossRefGoogle Scholar
  33. 33.
    Ding, S., D. Zhang, J. S. Chen, and X. W. Lou (2012) Facile synthesis of hierarchical MoS2 microspheres composed of fewlayered nanosheets and their lithium storage properties. Nanoscale 4: 95–98.CrossRefGoogle Scholar
  34. 34.
    Pumera, M. and A. H. Loo (2014) Layered transition-metal dichalcogenides (MoS2 and WS2) for sensing and biosensing. Trac-Trends Anal. Chem. 61: 49–53.CrossRefGoogle Scholar
  35. 35.
    Chang, K. and W. Chen (2011) L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5: 4720–4728.CrossRefGoogle Scholar
  36. 36.
    Sreenivasulu, V., N. S. Kumar, M. Suguna, M. Asif, E. H. Al-Ghurabi, Z. X. Huang, and Z. Zhen (2016) Biosynthesis of silver nanoparticles using mimosa pudica plant root extract: characterization, antibacterial activity and electrochemical detection of dopamine. Int. J. Electrochem. Sci. 11: 9959–9971.CrossRefGoogle Scholar
  37. 37.
    Yang, T., H. Chen, C. Jing, S. Luo, W. Li, and K. Jiao (2017) Using poly(m-aminobenzenesulfonic acid)-reduced MoS2 nanocomposite synergistic electrocatalysis for determination of dopamine. Sens. Actuator B-Chem. 249: 451–457.CrossRefGoogle Scholar
  38. 38.
    Zou, H. L., B. L. Li, H. Q. Luo, and N. B. Li (2017) 0D-2D heterostructures of Au nanoparticles and layered MoS2 for simultaneous detections of dopamine, ascorbic acid, uric acid, and nitrite. Sens. Actuator B-Chem. 253: 352–360.CrossRefGoogle Scholar
  39. 39.
    Pramoda, K., K. Moses, U. Maitra, and C. N. R. Rao (2015) Superior performance of a MoS2-RGO composite and a borocarbonitride in the electrochemical detection of dopamine, uric acid and adenine. Electroanalysis 27: 1892–1898.CrossRefGoogle Scholar
  40. 40.
    Tashkhourian, J., M. R. H. Nezhad, J. Khodavesi, and S. Javadi (2009) Silver nanoparticles modified carbon nanotube paste electrode for simultaneous determination of dopamine and ascorbic acid. J. Electroanal. Chem. 633: 85–91.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jae-Wook Shin
    • 1
  • Jinho Yoon
    • 1
  • Minkyu Shin
    • 1
  • Jeong-Woo Choi
    • 1
    • 2
    Email author
  1. 1.Department of Chemical and Biomolecular EngineeringSogang UniversitySeoulKorea
  2. 2.Department of Biomedical EngineeringSogang UniversitySeoulKorea

Personalised recommendations