Advertisement

Recent Advances in the Metabolic Engineering of Klebsiella pneumoniae: A Potential Platform Microorganism for Biorefineries

  • Mi Na Rhie
  • Hee Taek Kim
  • Seo Young Jo
  • Luan Luong Chu
  • Kei-Anne Baritugo
  • Mary Grace Baylon
  • Jinwon Lee
  • Jeong-Geol Na
  • Lyul Ho Kim
  • Tae Wan Kim
  • Chulhwan Park
  • Soon Ho Hong
  • Jeong Chan JooEmail author
  • Si Jae ParkEmail author
Review Paper
  • 6 Downloads

Abstract

The production of industrial chemicals from renewable biomass resources is a promising solution to overcome the society’s dependence on petroleum and to mitigate the pollution resulting from petroleum processing. Klebsiella pneumoniae is a nutritionally versatile bacterium with numerous native pathways for the production of well-known and industrially important platform chemicals derived from various sugars. Genomic sequence analyses have shown that the K. pneumoniae genome has a high similarity with that of Escherichia coli, the most studied organism, which is used in industrial biotechnology processes for fuel and chemical production. Hence, K. pneumoniae can be considered as a promising platform microorganism that can be metabolically engineered for the high-level production of bio-based chemicals. This review highlights the substrate metabolism and the metabolic engineering strategies developed in K. pneumoniae for the production of biobased chemicals.

Keywords

Klebsiella pneumoniae biorefinery metabolic engineering microbial cell factory carbon utilization biomass 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Oh, Y. H., I. Y. Eom, J. C. Joo, J. H. Yu, B. K. Song, S. H. Lee, S. H. Hong, and S. J. Park (2015) Recent advances in development of biomass pretreatment technologies used in biorefinery for the production of bio-based fuels, chemicals and polymers. Korean J. Chem. Eng. 32: 1945–1959.Google Scholar
  2. 2.
    Joo, J. C., A. N. Khusnutdinova, R. Flick, T. Kim, U. T. Bornscheuer, A. F. Yakunin, and R. Mahadevan (2017) Alkene hydrogenation activity of enoatereductases for an environmentally benign biosynthesis of adipic acid. Chem. Sci. 8: 1406–1413.Google Scholar
  3. 3.
    Baritugo, K. A. G., H. T. Kim, Y. David, J. H. Choi, J. Choi, T. W. Kim, C. Park, S. H. Hong, J. G. Na, K. J. Jeong, J. C. Joo, and S. J. Park (2018) Recent advances in metabolic engineering of Corynebacterium glutamicum strains as potential platform microorganisms for biorefnery. Biofuel Bioprod. Biorefin. doi: 10.1002/bbb.1895Google Scholar
  4. 4.
    Baritugo, K., H. T. Kim, Y. David, J. Choi, S. H. Hong, K. J. Jeong, J. C. Joo, and S. J. Park (2018) Metabolic engineering of Corynebacterium glutamicum for fermentative production of chemicals in biorefnery. Appl. Microbiol. Biotechnol. 102: 3915–37.Google Scholar
  5. 5.
    Kim, H. T., T. U. Khang, K. Baritugo, S. M. Hyun, K. H. Kang, S. H. Jung, B. K. Song, K. Park, M. Oh, G. B. Kim, H. U. Kim, S. Y. Lee, S. J. Park, and J. C. Joo (2019) Metabolic engineering of Corynebacterium glutamicum for the production of glutaric acid, a C5 dicarboxylic acid platform chemical. Metab. Eng. 51: 99–109.Google Scholar
  6. 6.
    Andin, N., A. Longieras, T. Veronese, F. Marcato, C. Molina-Jouve, and Uribelarrea, J. L. (2017) Improving carbon and energy distribution by coupling growth and medium chain length polyhydroxyalkanoate production from fatty acids by Pseudomonas putida KT2440. Biotechnol. Bioprocess Eng. 22: 308–318.Google Scholar
  7. 7.
    Koo, H., B. K. Salunke, B. Iskandarani, W. G. Oh, and B. S. Kim (2017) Improved degradation of lignocellulosic biomass pretreated by Fenton-like reaction using Fe3O4 magnetic nanoparticles. Biotechnol. Bioprocess Eng. 22: 597–603.Google Scholar
  8. 8.
    Joo, J. C., Y. H. Oh, J. H. Yu, S. M. Hyun, T. U. Khang, K. H. Kang, B. K. Song, K. Park, M. K. Oh, S. Y. Lee, and S. J. Park (2017) Production of 5-aminovaleric acid in recombinant Corynebacterium glutamicum strains from a Miscanthus hydrolysate solution prepared by a newly developed Miscanthus hydrolysis process. Bioresour. Technol. 245: 1692–700.Google Scholar
  9. 9.
    Baritugo, K., H. T. Kim, Y. David, T. U. Khang, S. M. Hyun, K. H. Kang, J. H. Yu, J. H. Choi, J. J. Song, J. C. Joo, and S. J. Park (2018) Enhanced production of gamma-aminobutyrate (GABA) in recombinant Corynebacterium glutamicum strains from empty fruit bunch biosugar solution. Microb. Cell Fact. 17: 129.Google Scholar
  10. 10.
    Kim, H. S., Y. H. Oh, Y. Jang, K. H. Kang, Y. David, J. H. Yu, B. K. Song, J. Choi, Y. K. Chang, J. C. Joo, and S. J. Park. (2016) Recombinant Ralstonia eutropha engineered to utilize xylose and its use for the production of poly(3-hydroxybutyrate) from sunflower stalk hydrolysate solution. Microb. Cell Fact. 15: 95.Google Scholar
  11. 11.
    Choi, S. Y., S. J. Park, W. J. Kim, J. E. Yang, H. Lee, J. Shin, and S. Y. Lee (2016) One-step fermentative production of poly(lactate-co-glycolate) from carbohydrates in Escherichia coli. Nat. Biotechnol. 34: 435–40.Google Scholar
  12. 12.
    Chae, C. G., Y. J. Kim, S. J. Lee, Y. H. Oh, J. E. Yang, J. C. Joo, K. H. Kang, Y. A. Jang, H. Lee, A. R. Park, B. K. Song, S. Y. Lee, and S. J. Park (2016) Biosynthesis of poly(2-hydroxybutyrate-co-lactate) in metabolically engineered Escherichia coli. Biotechnol. Bioprocess Eng. 21: 169–74.Google Scholar
  13. 13.
    David, Y., M. G. Baylon, P. D. V. N. Sudheer, K. Baritugo, C. G. Chae, Y. J. Kim, T. W. Kim, M. Kim, J. G. Na, and S. J. Park (2017) Screening of microorganisms able to degrade low-rank coal in aerobic conditions: potential coal biosolubilization mediators from coal to biochemical. Biotechnol. Bioprocess Eng. 22: 178–85.Google Scholar
  14. 14.
    Sudheer, P. D. V. N., Y. David, C. Chae, Y. J. Kim, M. G. Baylon, K. Baritugo, T. W. Kim, M. Kim, J. G. Na, and S. J. Park (2016) Advances in the biological treatment of coal for synthetic natural gas and chemicals. Korean J. Chem. Eng. 10: 2788–801.Google Scholar
  15. 15.
    Kim, H. T., K. A. Baritugo, Y. H. Oh, S. M. Hyun, T. U. Khang, K. H. Kang, S. H. Jung, B. K. Song, K. Park, I. K. Kim, M. O. Lee, Y. Kam, Y. T. Hwang, S. J. Park, and J. C. Joo (2018) Metabolic engineering of Corynebacterium glutamicum for the high-level production of cadaverine that can be used for synthesis of biopolyamide 510. ACS Sustain Chem. Eng. 6: 5296–305.Google Scholar
  16. 16.
    Becker, J. and C. Wittmann (2015) Advanced biotechnology: metabolically engineered cells for the bio-based production of chemicals and fuels, materials, and health-care products. Angew. Chem. Int. Ed. Engl. 54: 3328–50.Google Scholar
  17. 17.
    Yang, J. E., S. J. Park, W. J. Kim, H. J. Kim, B. Kim, H. Lee, J. Shin, and S. Y. Lee (2018) One-step fermentative production of aromatic polyesters from glucose by metabolically engineered Escherichia coli strains. Nat. Commun. 9: 79.Google Scholar
  18. 18.
    Choi, S. Y., W. J. Kim, S. J. Yu, S. J. Park, S. G. Im, and S. Y. Lee (2017) Engineering the xylose-catabolizing Dahms pathway for production of poly(d-lactate-co-glycolate) and poly(d-lactateco-glycolate-co-d-2-hydroxybutyrate) in Escherichia coli. Microb. Biotechnol. 10: 1353–64.Google Scholar
  19. 19.
    Buschke, N. and R. Schafer (2013) Metabolic engineering of industrial platform microorganisms for biorefinery applications–optimization of substrate spectrum and process robustness by rational and evolutive strategies. Bioresour. Technol. 135: 544–54.Google Scholar
  20. 20.
    Barr, J. G. (1977) Klebsiella: taxonomy, nomenclature, and communication. J. Clin. Pathol. 30: 943–944.Google Scholar
  21. 21.
    Brisse, S., F. Grimont, and P. A. Grimont (2006) The genus Klebsiella. pp.159–196. In: Dwerkin., M., S. Falkow, E. Rosenberg, K. H. Schleifer, and E. Stackebrandt (eds.). The Prokaryotes: A Handbook on the Biology of Bacteria. 3rd edn. New York, Springer.Google Scholar
  22. 22.
    Durgapal, M., V. Kumar, T. H. Yang, H. J. Lee, D. Seung, and S. Park (2014) Production of 1,3-propanediol from glycerol using the newly isolated Klebsiella pneumoniae J2B. Bioresour. Technol. 159: 223–231.Google Scholar
  23. 23.
    Kim, C., S. K. Ainala, Y. K. Oh, B. H. Jeon, S. Park, and J. R. Kim (2016) Metabolic flux change in Klebsiella pneumoniae L17 by anaerobic respiration in microbial fuel cell. Biotechnol. Bioprocess Eng. 21: 250–260.Google Scholar
  24. 24.
    Yu, E. K. C. and J. N. Saddler (1982) Power solvent production by Klebsiella pneumoniae grown on sugars present in wood hemicellulose. Biotechnol. Lett. 4: 121–126.Google Scholar
  25. 25.
    Saddler, J. N., K. C. Ernest, M. Mes-Hartree, N. Levitin, and H. H. Brownell (1983) Utilization of enzymatically hydrolyzed wood hemicelluloses by microorganisms for production of liquid fuels. Appl. Environ. Microbiol. 45: 153–160.Google Scholar
  26. 26.
    Yu, E. K. C., N. Levitin, and J. N. Saddler (1982) Production of 2,3-butanediol by Klebsiella pneumoniae grown on acid hydrolyzed wood hemicellulose. Biotechnol. Lett. 4: 741–746.Google Scholar
  27. 27.
    Jansen, N. B. and G. T. Tsao (1983) Bioconversion of pentoses to 2,3-butanediol by Klebsiella pneumoniae. pp. 85–89. In: A. Fiechter (eds.). Pentoses and Lignin. Springer, Berlin Heidelberg.Google Scholar
  28. 28.
    Feldmann, S. D., H. Sahm, and G. A. Sprenger (1992) Cloning and expression of the genes for xylose isomerase and xylulokinase from Klebsiella pneumoniae 1033 in Escherichia coli K12. Mol. Genet. Genomics. 234: 201–210.Google Scholar
  29. 29.
    Nishikawa, N. K., R. Sutcliffe, and J. N. Saddler (1988) The effect of wood-derived inhibitors on 2,3-butanediol production by Klebsiella pneumoniae. Biotechnol. Bioeng. 31: 624–627.Google Scholar
  30. 30.
    Nishikawa, N. K., R. Sutcliffe, and J. N. Saddler (1988) The influence of lignin degradation products on xylose fermentation by Klebsiella pneumoniae. Appl. Microbiol. Biotechnol. 27: 549–552.Google Scholar
  31. 31.
    Grover, B. P., S. K. Garg, and J. Verma (1990) Production of 2,3-butanediol from wood hydrolysate by Klebsiella pneumoniae. World J. Microbiol. Biotechnol. 6: 328–332.Google Scholar
  32. 32.
    Mu, Y., Z. L. Xiu, and D. J. Zhang (2008) A combined bioprocess of biodiesel production by lipase with microbial production of 1,3-propanediol by Klebsiella pneumoniae. Biochem. Eng. J. 40: 537–541.Google Scholar
  33. 33.
    Yang, F., M. A. Hanna, and R. Sun (2012) Value-added uses for crude glycerol—a byproduct of biodiesel production. Biotechnol. Biofuels 5: 13.Google Scholar
  34. 34.
    Zhang, Y., Y. Li, C. Du, M. Liu, and Z. A. Cao (2006) Inactivation of aldehyde dehydrogenase: a key factor for engineering 1,3-propanediol production by Klebsiella pneumoniae. Metab. Eng. 8: 578–586.Google Scholar
  35. 35.
    Sun, J., J. van den Heuvel, P. Soucaille, Y. Qu, and A. P. Zeng (2003) Comparative genomic analysis of dha regulon and related genes for anaerobic glycerol metabolism in bacteria. Biotechnol. Prog. 19: 263–272.Google Scholar
  36. 36.
    Wei, D., M. Wang, B. Jiang, J. Shi, and J. Hao (2014) Role of dihydroxyacetone kinases I and II in the dha regulon of Klebsiella pneumoniae. J. Biotechnol. 177: 13–19.Google Scholar
  37. 37.
    Zhang, G. L., X. L. Xu, C. Li, and B. Ma (2009) Cloning, expression and reactivating characterization of glycerol dehydratase reactivation factor from Klebsiella pneumoniae XJPD-Li. World J. Microbiol. Biotechnol. 25: 1947–1953.Google Scholar
  38. 38.
    Seo, M. Y., J. W. Seo, S. Y. Heo, J. O. Baek, D. Rairakhwada, B. R. Oh, P. S. Seo, M. H. Choi, and C. H. Kim (2009) Elimination of by-product formation during production of 1,3-propanediol in Klebsiella pneumoniae by inactivation of glycerol oxidative pathway. Appl. Microbiol. Biotechnol. 84: 527–534.Google Scholar
  39. 39.
    Zhuge, B., C. Zhang, H. Fang, J. Zhuge, and K. Permaul (2010) Expression of 1,3-propanediol oxidoreductase and its isoenzyme in Klebsiella pneumoniae for bioconversion of glycerol into 1,3-propanediol. Appl. Microbiol. Biotechnol. 87: 2177–2184.Google Scholar
  40. 40.
    Xu, Y. Z., N. N. Guo, Z. M. Zheng, X. J. Ou, H. J. Liu, and D. H. Liu (2009) Metabolism in 1,3-propanediol fed-batch fermentation by a D-lactate deficient mutant of Klebsiella pneumoniae. Biotechnol. Bioeng. 104: 965–972.Google Scholar
  41. 41.
    Zhong, Z., L. Liu, J. Zhou, L. Gao, J. Xu, S. Fu, and H. Gong (2014) Influences of 3-hydroxypropionaldehyde and lactate on the production of 1,3-propanediol by Klebsiella pneumoniae. Bioresour Bioprocess 1: 2.Google Scholar
  42. 42.
    Oh, B. R., S. Lee, S. Heo, J. Seo, and C. H. Kim (2018) Efficient production of 1,3-propanediol from crude glycerol by repeated fed-batch fermentation strategy of a lactate and 2,3-butanediol deficient mutant of Klebsiella pneumoniae. Microb. Cell Fact. 17: 92Google Scholar
  43. 43.
    Park, J. M., C. Rathnasingh, and H. Song (2017) Metabolic engineering of Klebsiella pneumoniae based on in silico analysis and its pilot-scale application for 1,3-propanediol and 2,3-butanediol co-production. J. Ind. Microbiol. Biotechnol. 44: 431–441.Google Scholar
  44. 44.
    Luo, L. H., J. W. Seo, B. R. Oh, P. S. Seo, S. Y. Heo, W. K. Hong, D. H. Kim, and C. H. Kim (2011) Stimulation of reductive glycerol metabolism by overexpression of an aldehyde dehydrogenase in a recombinant Klebsiella pneumoniae strain defective in the oxidative pathway. J. Ind. Microbiol. Biotechnol. 38: 991–999.Google Scholar
  45. 45.
    Oh, B. R., J. W. Seo, S. Y. Heo, W. K. Hong, L. H. Luo, J. H. Son, D. H. Park, and C. H. Kim (2012) Fermentation strategies for 1,3-propanediol production from glycerol using a genetically engineered Klebsiella pneumoniae strain to eliminate byproduct formation. Bioprocess Biosyst. Eng. 35: 159–165.Google Scholar
  46. 46.
    Jin, P., S. G. Lu, H. Huang, F. Luo, and S. Li (2011) Enhanced reducing equivalent generation for 1,3-propanediol production through cofermentation of glycerol and xylose by Klebsiella pneumoniae. Appl. Biochem. Biotechnol. 165: 1532–1542.Google Scholar
  47. 47.
    Wang, M., G. Wang, T. Zhang, L. Fan, and T. Tan (2017) Multimodular engineering of 1,3-propanediol biosynthesis system in Klebsiella pneumoniae from co-substrate Appl. Microbiol. Biotechnol. 101: 647–657.Google Scholar
  48. 48.
    Kumar, V., S. Ashok, and S. Park (2013) Recent advances in biological production of 3-hydroxypropionic acid. Biotechnol. Adv. 31: 945–961.Google Scholar
  49. 49.
    Li, Y. and P. Tian (2015) Contemplating 3-hydroxypropionic acid biosynthesis in Klebsiella pneumoniae. Indian J. Microbiol. 55: 131–139.Google Scholar
  50. 50.
    Luo, L. H., C. H. Kim, S. Y. Heo, B. R. Oh, W. K. Hong, S. Kim, D. H. Kim, and J. W. Seo (2012) Production of 3-hydroxypropionic acid through propionaldehyde dehydrogenase PduP mediated biosynthetic pathway in Klebsiella pneumoniae. Bioresour. Technol. 103: 1–6.Google Scholar
  51. 51.
    Ashok, S., M. Sankaranarayanan, Y. Ko, K. E. Jae, S. K. Ainala, V. Kumar, and S. Park (2013) Production of 3-hydroxypropionic acid from glycerol by recombinant Klebsiella pneumoniae ΔdhaT ΔyqhD which can produce vitamin B12 naturally. Biotechnol. Bioeng. 110: 511–524.Google Scholar
  52. 52.
    Luo, L. H., J. W. Seo, S. Y. Heo, B. R. Oh, D. H. Kim, and C. H. Kim (2013) Identification and characterization of Klebsiella pneumoniae aldehyde dehydrogenases increasing production of 3-hydroxypropionic acid from glycerol. Bioprocess Biosyst. Eng. 36: 1319–1326.Google Scholar
  53. 53.
    Wang, K., X. Wang, X. Ge, and P. Tian (2012) Heterologous expression of aldehyde dehydrogenase from Saccharomyces cerevisiae in Klebsiella pneumoniae for 3-hydroxypropionic acid production from glycerol. Indian J. Microbiol. 52: 478–483.Google Scholar
  54. 54.
    Li, Y., M. Su, X. Ge, and P. Tian (2013) Enhanced aldehyde dehydrogenase activity by regenerating NAD+ in Klebsiella pneumoniae and implications for the glycerol dissimilation pathways. Biotechnol. Lett. 35: 1609–1615.Google Scholar
  55. 55.
    Jiang, J., B. Huang, H. Wu, Z. Li, and Q. Ye (2018) Efficient 3-hydroxypropionic acid production from glycerol by metabolically engineered Klebsiella pneumoniae. Bioresour. Bioprocess 5: 34.Google Scholar
  56. 56.
    Ko, Y., E. Seol, B. S. Seka, S. Kwon, J. Lee, and S. Park (2017) Metabolic engineering of Klebsiella pneumoniae J2B for coproduction of 3-hydroxypropionic acid and 1,3-propanediol from glycerol: Reduction of acetate and other by-products. Bioresour. Technol. 244: 1096–1103.Google Scholar
  57. 57.
    Su, M. Y., Y. Li, X. Z. Ge, and P. F. Tian (2014) Insights into 3-hydroxypropionic acid biosynthesis revealed by overexpressing native glycerol dehydrogenase in Klebsiella pneumoniae. Biotechnol. Biotechnol. Equip. 28: 762–768.Google Scholar
  58. 58.
    Kim, B., S. Lee, J. Park, M. Lu, M. Oh, Y. Kim, and J. Lee (2012) Enhanced 2,3-butanediol production in recombinant Klebsiella pneumoniae via overexpression of synthesis-related genes. J. Microbiol. Biotechnol. 22: 1258–1263.Google Scholar
  59. 59.
    Lu, M., C. Park, S. Lee, B. Kim, M. K. Oh, Y. Um, J. Kim, and J. Lee (2014) The regulation of 2,3-butanediol synthesis in Klebsiella pneumoniae as revealed by gene over-expressions and metabolic flux analysis. Bioprocess Biosyst. Eng. 37: 343–353.Google Scholar
  60. 60.
    Guo, X., C. Cao, Y. Wang, C. Li, M. Wu, Y. Chen, P. Zhang, H. Pei, and D. Xiao (2014) Effect of the inactivation of lactate dehydrogenase, ethanol dehydrogenase, and phosphotransacetylase on 2,3-butanediol production in Klebsiella pneumoniae strain. Biotechnol. Biofuels 7: 44.Google Scholar
  61. 61.
    Jung, M. Y., S. Mazumdar, S. H. Shin, K. S. Yang, J. Lee, and M. K. Oh (2014) Improvement of 2,3-butanediol yield in Klebsiella pneumoniae by deletion of the pyruvate formatelyase gene. Appl. Environ. Microbiol. 80: 6195–6203.Google Scholar
  62. 62.
    Rathnasingh, C., J. M. Park, D. K. Kim, H. Song, and Y. K. Chang (2016) Metabolic engineering of Klebsiella pneumoniae and in silico investigation for enhanced 2,3-butanediol production. Biotechnol. Lett. 38975–982.Google Scholar
  63. 63.
    Kim, B., S. Lee, D. Jeong, J. Yang, M. K. Oh, and J. Lee (2014) Redistribution of carbon flux toward 2,3-butanediol production in Klebsiella pneumoniae by metabolic engineering. PLoS One 9: e105322.Google Scholar
  64. 64.
    Park, J. M., W. K. Hong, S. M. Lee, S. Y. Heo, Y. R. Jung, I. Y. Kang, B. R. Oh, J. W. Seo, and C. H. Kim (2014) Identification and characterization of a short-chain acyl dehydrogenase from Klebsiella pneumoniae and its application for high-level production of L-2,3-butanediol. J. Ind. Microbiol. Biotechnol. 41: 1425–1433.Google Scholar
  65. 65.
    Wang, Y., F. Tao, and P. Xu (2014) Glycerol dehydrogenase plays a dual role in glycerol metabolism and 2,3-butanediol formation in Klebsiella pneumoniae. J. Biol. Chem. 289: 6080–6090.Google Scholar
  66. 66.
    Chen, C., D. Wei, J. Shi, M. Wang, and J. Hao (2014) Mechanism of 2,3-butanediol stereoisomer formation in Klebsiella pneumoniae. Appl. Microbiol. Biotechnol. 98: 4603–4613.Google Scholar
  67. 67.
    Xu, Q., L. Xie, Y. Li, H. Lin, S. Sun, X. Guan, K. Hu, Y. Shen, and L. Zhang (2014) Metabolic engineering of Escherichia coli for efficient production of (3R)-acetoin. J. Chem. Technol. Biotechnol. 90: 93–100.Google Scholar
  68. 68.
    Jang, J., H. Jung, D. Kim, and M. Oh (2017) Acetoin production using metabolically engineered Klebsiella pneumoniae. Korean Chem. Eng. Res. 55: 237–241.Google Scholar
  69. 69.
    Wang, Y., F., B. Xin, H. Liu, Y. Gao, N. Zhou, and P. Xu (2017) Switch of metabolic status: redirecting metabolic flux for acetoin production from glycerol by activating a silent glycerol catabolism pathway. Metab. Eng. 39: 90–101.Google Scholar
  70. 70.
    Song, Z., Y. Sun, B. Wei, and Z. Xiu (2013) Two-step saltingout extraction of 1,3-propanediol and lactic acid from the fermentation broth of Klebsiella pneumoniae on biodieselderived crude glycerol. Eng. Life Sci. 13: 487–495.Google Scholar
  71. 71.
    Feng, X., Y. Ding, M. Xian, X. Xu, R. Zhang, and G. Zhao (2014) Production of optically pure D-lactate from glycerol by engineered Klebsiella pneumoniae strain. Bioresour. Technol. 172: 269–275.Google Scholar
  72. 72.
    Feng, X., L. Jiang, X. Han, X. Liu, Z. Zhao, H. Liu, M. Xian, and G. Zhao (2017) Production of d-lactate from glucose using Klebsiella pneumoniae mutants. Microb. Cell Fact. 16: 209.Google Scholar
  73. 73.
    Jung, H. M., M. Y. Jung, and M. K. Oh (2015) Metabolic engineering of Klebsiella pneumoniae for the production of cis, cis-muconic acid. Appl. Microbiol. Biotechnol. 99: 5217–5225.Google Scholar
  74. 74.
    Banerjee, M. (1989) Kinetics of ethanolic fermentation of D-xylose by Klebsiella pneumoniae and its mutants. Appl. Environ. Microbiol. 55: 1169–1177.Google Scholar
  75. 75.
    Oh, B. R., J. W. Seo, S. Y. Heo, W. K. Hong, L. H. Luo, M. H. Joe, D. H. Park, and C. H. Kim (2011) Efficient production of ethanol from crude glycerol by a Klebsiella pneumoniae mutant strain. Bioresour. Technol. 102: 3918–3922.Google Scholar
  76. 76.
    Oh, B. R., J. W. Seo, S. Y. Heo, W. K. Hong, L. H. Luo, S. Kim, O. Kwon, J. Sohn, M. Joe, D. Park, and C. H. Kim (2012) Enhancement of ethanol production from glycerol in a Klebsiella pneumoniae mutant strain by the inactivation of lactate dehydrogenase. Process Biochem. 47: 156–159.Google Scholar
  77. 77.
    Oh, B. R., W. K. Hong, S. Y. Heo, M. H. Joe, J. W. Seo, and C. H. Kim (2013) The role of aldehyde/alcohol dehydrogenase (AdhE) in ethanol production from glycerol by Klebsiella pneumoniae. J. Ind. Microb. Biotechnol. 40: 227–233.Google Scholar
  78. 78.
    Wang, M., L. Fan, and T. Tan (2014) 1-Butanol production from glycerol by engineered Klebsiella pneumoniae. RSC Adv. 4: 57791–57798.Google Scholar
  79. 79.
    Oh, B. R., S. Y. Heo, S. M. Lee, W. K. Hong, J. M. Park, Y. R. Jung, J. M. Park, W. Hong, J. Sohn, D. Kim, S. Jung, C. H. Kim, and J. Seo (2014) Production of isobutanol from crude glycerol by a genetically-engineered Klebsiella pneumoniae strain. Biotechnol. Lett. 36: 397–402.Google Scholar
  80. 80.
    Gu, J., J. Zhou, Z. Zhang, C. H. Kim, B. Jiang, J. Shi, and J. Hao (2017) Isobutanol and 2-ketoisovalerate production by Klebsiella pneumoniae via a native pathway. Metab. Eng. 43: 71–84.Google Scholar
  81. 81.
    Chen, Z., Y. Wu, J. Huang, and D. Liu (2015) Metabolic engineering of Klebsiella pneumoniae for the de novo production of 2-butanol as a potential biofuel. Bioresour. Technol. 197: 260–265.Google Scholar
  82. 82.
    Da Silva, G. P., M. Mack, and J. Contiero (2009) Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol. Adv. 27: 30–39.Google Scholar
  83. 83.
    Dobson, R., V. Gray, and K. Rumbold (2012) Microbial utilization of crude glycerol for the production of value-added products. J. Ind. Microbiol. Biotechnol. 39: 217–226.Google Scholar
  84. 84.
    Jun, S. A., C. Moon, C. H. Kang, S. W. Kong, B. I. Sang, and Y. Um (2010) Microbial fed-batch production of 1,3-propanediol using raw glycerol with suspended and immobilized Klebsiella pneumoniae. Appl. Biochem. Biotechnol. 161: 491–501.Google Scholar
  85. 85.
    Sattayasamitsathit, S., P. Methacanon, and P. Prasertsan (2011) Enhance 1,3-propanediol production from crude glycerol in batch and fed-batch fermentation with two-phase pH-controlled strategy. Electron. J. Biotechnol. 14: 6.Google Scholar
  86. 86.
    Almeida, J. R., L. C. Fávaro, and B. F. Quirino (2012) Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste. Biotechnol. Biofuels 5: 48.Google Scholar
  87. 87.
    Guo, N. N., Z. M. Zheng, Y. L. Mai, H. J. Liu, and D. H. Liu (2010) Consequences of cps mutation of Klebsiella pneumoniae on 1,3-propanediol fermentation. Appl. Microbiol. Biotechnol. 86: 701–707.Google Scholar
  88. 88.
    Jung, S. G., J. H. Jang, A. Y. Kim, M. C. Lim, B. Kim, J. Lee, and Y. R. Kim (2013) Removal of pathogenic factors from 2,3-butanediol-producing Klebsiella species by inactivating virulencerelated wabG gene. Appl. Microbiol. Biotechnol. 97: 1997–2007.Google Scholar
  89. 89.
    Zhu, J., S. Li, X. Ji, H. Huang, and N. Hu (2009) Enhanced 1,3-propanediol production in recombinant Klebsiella pneumoniae carrying the gene yqhD encoding 1,3-propanediol oxidoreductase isoenzyme. World J. Microbiol. Biotechnol. 25: 1217–1223.Google Scholar
  90. 90.
    Li, Y., X. Wang, X. Z. Ge, and P. F. Tian (2016) High production of 3-hydroxypropionic acid in Klebsiella pneumoniae by systematic optimization of glycerol metabolism. Sci. Rep. 6: 26932.Google Scholar
  91. 91.
    Qin, J., Z. Xiao, C. Ma, N. Xie, P. Liu, and P. Xu (2006) Production of 2,3-Butandeiol by Klebsiella pneumoniae using glucose and ammonium phosphate. Chin. J. Chem. Eng. 14: 132–136.Google Scholar
  92. 92.
    Zheng, Y., H. Zhang, L. Zhao, L. Wei, X. Ma, and D. Wei (2008) One-step production of 2,3-butanediol from starch by secretory over-expression of amylase in Klebsiella pneumoniae. J. Chem. Technol. Biotechnol. 83: 1409–1412.Google Scholar
  93. 93.
    Ma, C., A. Wang, J. Qin, L. Li, X. Ai, T. Jiang, H. Tang, and P. Xu (2009) Enhanced 2,3-Butanediol production by Klebsiella pneumoniae SDM. Appl. Microbiol. Biotechnol. 82:49–57.Google Scholar
  94. 94.
    Petrov, K. and P. Petrova (2009) High production of 2,3-butanediol from glycerol by Klebsiella pneumoniae G31. Appl. Microbiol. Biotechnol. 84: 659–65.Google Scholar
  95. 95.
    Sun, L.H., X. D. Wang, J. Y. Dai, and Z. L. Xiu (2009) Microbial production of 2,3-butandiol from Jerusalem artichoke tubers by Klebsiella pneumoniae. Appl. Microbiol. Biotechnol. 82: 847–52.Google Scholar
  96. 96.
    Cho, J. H., C. Rathnasingh, H. Song, B. W. Chung, H. J. Lee, and D. Seung (2012) Fermentation and evaluation of Klebsiella pneumoniae and K. oxytoca on the production of 2,3-butanediol. Bioprocess Biosyst. Eng. 35: 1081–8.Google Scholar
  97. 97.
    Tsvetanova, F., P. Petrova, and K. Petrov (2014) 2,3-butanediol production from starch by engineered Klebsiella pneumoniae G31-A. Appl. Microbiol. Biotechnol. 98: 2441–51.Google Scholar
  98. 98.
    Lee, J. H., M. Jung, and M. Oh (2018) High-yield production of 1,3-propanediol from glycerol by metabolically engineered Klebsiella pneumoniae. Biotechnol. Biofuels 11: 104.Google Scholar
  99. 99.
    Lu, X. Y., S. L. Ren, J. Z. Lu, H. Zong, J. Song, and B. Zhuge (2018) Enhanced 1,3-propanediol production in Klebsiella pneumoniae by a combined strategy of strengthening the TCA cycle and weakening the glucose effect. J. Appl. Microbiol. 124: 682–690.Google Scholar
  100. 100.
    Zong, H., X. Liu, W. Chen, B. Zhuge, and J. Sun (2017) Construction of glycerol synthesis pathway in Klebsiella pneumoniae for bioconversion of glucose into 1,3-propanediol. biotechnol. Bioprocess Eng. 22: 549–555.Google Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Mi Na Rhie
    • 1
  • Hee Taek Kim
    • 2
  • Seo Young Jo
    • 1
  • Luan Luong Chu
    • 1
  • Kei-Anne Baritugo
    • 1
  • Mary Grace Baylon
    • 1
  • Jinwon Lee
    • 3
  • Jeong-Geol Na
    • 3
  • Lyul Ho Kim
    • 3
  • Tae Wan Kim
    • 4
  • Chulhwan Park
    • 5
  • Soon Ho Hong
    • 6
  • Jeong Chan Joo
    • 2
    Email author
  • Si Jae Park
    • 1
    Email author
  1. 1.Division of Chemical Engineering and Materials ScienceEwha Womans UniversitySeoulKorea
  2. 2.Bio-based Chemistry Research Center, Advanced Convergent Chemistry DivisionKorea Research Institute of Chemical TechnologyDaejeonKorea
  3. 3.Department of Chemical and Biomolecular EngineeringSogang UniversitySeoulKorea
  4. 4.Department of Biotechnology and BioengineeringChonnam National UniversityGwangjuKorea
  5. 5.Department of Chemical EngineeringKwangwoon UniversitySeoulKorea
  6. 6.Department of Chemical EngineeringUniversity of UlsanUlsanKorea

Personalised recommendations