Development of Cellulose Hydrogel Microspheres for Lipase Immobilization

  • Soyeon Jo
  • Saerom Park
  • Yujin Oh
  • Jiyeon Hong
  • Hyung Joo Kim
  • Kwang Jin Kim
  • Kyeong Keun Oh
  • Sang Hyun LeeEmail author
Research Paper


Cellulose hydrogel microspheres were prepared by sol-gel transition using an ionic liquid-in-oil emulsion. Factors that influenced the formation of these microspheres, including the ratio of ionic liquid to oil, surfactant concentration, and stirring speed, were optimized for lipase immobilization. Using the optimized method, Candida rugosa lipase was efficiently immobilized on the microspheres by physical adsorption. As compared with the free lipase, the specific activity of the immobilized lipase was 1.4 times higher, its half-life at 45°C was 41 times longer, and it showed an enhanced stability over a wide pH range. The lipase immobilized on cellulose microspheres showed a much higher loading efficiency, immobilization yield, and specificity constant than lipase immobilized on microcrystalline cellulose or millimeter-sized hydrogel beads. To increase the reusability of cellulose microspheres as an enzyme support material, magnetic cellulose microspheres were also prepared by adding Fe3O4. The lipase immobilized on magnetic cellulose microspheres was simply recovered using a magnet and continuously reused with a minimal loss of activity.


cellulose ionic liquid microsphere lipase immobilization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Deng, J., W. Liang, and J. Fang (2016) Liquid crystal dropletembedded biopolymer hydrogel sheets for biosensor applications. ACS Appl. Mater. Interfaces 8: 3928–3932.CrossRefGoogle Scholar
  2. 2.
    Popa, E. G., M. E. Gomes, and R. L. Reis (2011) Cell delivery systems using alginate-carrageenan hydrogel beads and fibers for regenerative medicine applications. Biomacromolecules 12: 3952–3961.CrossRefGoogle Scholar
  3. 3.
    Matto, M. and Q. Husain (2009) Calcium alginate-starch hybrid support for both surface immobilization and entrapment of bitter gourd (Momordica charantia) peroxidase. J. Mol. Catal. B: Enzym. 57: 164–170.CrossRefGoogle Scholar
  4. 4.
    Betigeri, S. S. and S. H. Steven (2002) Immobilization of lipase using hydrophilic polymers in the form of hydrogel beads. Biomaterials 23: 3627–3636.CrossRefGoogle Scholar
  5. 5.
    Sangeetha, K. and T. E. Abraham (2008) Investigation on the development of sturdy bioactive hydrogel beads. J. Appl. Polym. Sci. 107: 2899–2908.CrossRefGoogle Scholar
  6. 6.
    Zhang, Z., R. Zhang, L. Chen, and D. J. McClements (2016) Encapsulation of lactase (β-galactosidase) into κ-carrageenanbased hydrogel beads: Impact of environmental conditions on enzyme activity. Food Chem. 200: 69–75.CrossRefGoogle Scholar
  7. 7.
    Jegannathan, K. R., E. S. Chan, and P. Ravindra (2009) Physical and stability characteristics of Burkholderia cepacia lipase encapsulated in κ-carrageenan. J. Mol. Catal. B. Enzym. 58: 78–83.CrossRefGoogle Scholar
  8. 8.
    Swatloski, R. P., S. K. Spear, J. D. Holbrey, and R. D. Rogers (2002) Dissolution of cellulose with ionic liquids. J. Am. Chem. Soc. 124: 4974–7975.CrossRefGoogle Scholar
  9. 9.
    Turner, M. B., S.K. Spear, J. D. Holbrey, and R. D. Rogers (2004) Production of bioactive cellulose films reconstituted from ionic liquids. Biomacromolucules 5: 1379–1384.CrossRefGoogle Scholar
  10. 10.
    Jo, S., Y. Oh, S. Park, E. Kan, and S. H. Lee (2017) Cellulose/carrageenan/TiO2 nanocomposite for adsorption and photodegradation of cationic dye. Biotechnol. Bioproc. Eng. 22: 734–738.CrossRefGoogle Scholar
  11. 11.
    Liu, Z., H. Wang, B. Li, Y. Jiang, G. Yu, and X. Mu (2012) Biocompatible magnetic cellulose-chitosan hybrid gel microspheres reconstituted from ionic liquids for enzyme immobilization. J. Mater. Chem. 22: 15085–15091.CrossRefGoogle Scholar
  12. 12.
    Peng, S., H. Meng, Y. Ouyang, and J. Chang (2014) Nanoporous magnetic cellulose-chitosan composite microspheres: preparation, characterization, and application for Cu(II) adsorption. Ind. Eng. Chem. Res. 53: 2106–2113.CrossRefGoogle Scholar
  13. 13.
    Rama, K., P. Senapati, and M. K. Das (2005) Formulation and in vitro evaluation of ethyl cellulose microspheres containing zidovudine. J. Microencapsul. 22: 863–876.CrossRefGoogle Scholar
  14. 14.
    Du, K. F., M. Yan, Q. Y. Wang, and H. Song (2010) Preparation and characterizaiton of novel macroporous cellulose beads regenerated from ionic liquid for fast chromatography. J. Chromatogr. A. 1217(2010): 1298–1304.CrossRefGoogle Scholar
  15. 15.
    Luo, X. and L. Zhang (2010) Immobilization of penicillin G acylase in epoxy-activated magnetic cellulose microspheres for improvement of biocatalytic stability and activities. Biomacromolecules 11: 2896–2903CrossRefGoogle Scholar
  16. 16.
    Park, S., S. H. Kim, J. H. Kim, H. Yu, H. J. Kim, Y. Yang, H. Kim, Y. H. Kim, S. H. Ha, and S. H. Lee (2015) Application of cellulose/lignin hydrogel beads as novel supports for immobilizing lipase. J. Mol. Catal. B. Enzym. 119: 33–39.CrossRefGoogle Scholar
  17. 17.
    Kim, H. J., J. N. Jin, E. Kan, K. J. Kim, and S. H. Lee (2017) Bacterial cellulose-chitosan composite hydrogel beads for enzyme immobilization. Biotechnol. Bioproc. Eng. 22: 89–94.CrossRefGoogle Scholar
  18. 18.
    Pei, Y., X. Wu, G. Xu, Z. Sun, X. Zheng, J. Liu, and K. Tang (2016) Tannin-immobilized cellulose microspheres as effective adsorbents for removing dye (methlylene blue) from aqueous solution. J. Chem. Technol. Biotechnol. 92: 1276–1284.CrossRefGoogle Scholar
  19. 19.
    Luo, X. and L. Zhang (2010) Creation of regenerated cellulose microspheres with diameter ranging from micron to millimeter for chromatography applications. J. Chromatogr. A. 1217: 5922–5929.CrossRefGoogle Scholar
  20. 20.
    Seema, S. B. and H. N. Steven (2002) Immobilization of lipase using hydrophilic polymers in the form of hydrogel beads. Biomaterials 23: 3627–3636.CrossRefGoogle Scholar
  21. 21.
    Shuai, W. T., R. K. Das, M. Naghdi, S. K. Brar, and M. Verma (2018) A review on the important aspects of lipase immobilization on nanomaterials. Appl. Biochem. Biotechnol. 64: 496–508.CrossRefGoogle Scholar
  22. 22.
    Kim, H. J., S. Park, S. H. Kim, J. H. Kim, H. J. Yu, H. J. Kim, Y. H. Yang, E. S. Kan, Y. H. Kim, and S. H. Lee (2015) Biocompatible cellulose nanocrystals as supports to immobilize lipase. J. Mol. Catal. B: Enzym. 122: 170–178.CrossRefGoogle Scholar
  23. 23.
    Mandal, S., S. Ghosh, C. Banerjee, J. Kuchlyan, D. Banik, and N. Sarkar (2013) A novel ionic liquid-in-oil microemulsion composed of biologically acceptable components: an excitation wavelength dependent fluorescence resonance energy transfer study. J. Phys. Chem. B. 117: 3221–3231.CrossRefGoogle Scholar
  24. 24.
    Davis, C. R., S. L. Kelly, and K. A. Erk (2018) Comparing laser diffraction and optical microscopy for characterizing superabsorbent polymer particle morphology, size, and swelling capacity. J. Appl. Polym. Sci. 135: 46055.CrossRefGoogle Scholar
  25. 25.
    Geluk, M. A., W. Norde, H. K. A. I. Van Kalsbeek, and K. Van’t Riet (1992) Adsorption of lipase from Candida rugosa on cellulose and its influence on lipolytic activity. Enzyme Microb. Technol. 14: 748–754.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Soyeon Jo
    • 1
  • Saerom Park
    • 1
  • Yujin Oh
    • 1
  • Jiyeon Hong
    • 1
  • Hyung Joo Kim
    • 1
  • Kwang Jin Kim
    • 2
  • Kyeong Keun Oh
    • 3
  • Sang Hyun Lee
    • 1
    Email author
  1. 1.Department of Biological EngineeringKonkuk UniversitySeoulKorea
  2. 2.Rural Development Administration, NIHHSUrban Agriculture Research DivisionWanjuKorea
  3. 3.Department of Chemical EngineeringDankook UniversityYonginKorea

Personalised recommendations