Development of Cellulose Hydrogel Microspheres for Lipase Immobilization
- 1 Downloads
Abstract
Cellulose hydrogel microspheres were prepared by sol-gel transition using an ionic liquid-in-oil emulsion. Factors that influenced the formation of these microspheres, including the ratio of ionic liquid to oil, surfactant concentration, and stirring speed, were optimized for lipase immobilization. Using the optimized method, Candida rugosa lipase was efficiently immobilized on the microspheres by physical adsorption. As compared with the free lipase, the specific activity of the immobilized lipase was 1.4 times higher, its half-life at 45°C was 41 times longer, and it showed an enhanced stability over a wide pH range. The lipase immobilized on cellulose microspheres showed a much higher loading efficiency, immobilization yield, and specificity constant than lipase immobilized on microcrystalline cellulose or millimeter-sized hydrogel beads. To increase the reusability of cellulose microspheres as an enzyme support material, magnetic cellulose microspheres were also prepared by adding Fe3O4. The lipase immobilized on magnetic cellulose microspheres was simply recovered using a magnet and continuously reused with a minimal loss of activity.
Keywords
cellulose ionic liquid microsphere lipase immobilizationPreview
Unable to display preview. Download preview PDF.
References
- 1.Deng, J., W. Liang, and J. Fang (2016) Liquid crystal dropletembedded biopolymer hydrogel sheets for biosensor applications. ACS Appl. Mater. Interfaces 8: 3928–3932.CrossRefGoogle Scholar
- 2.Popa, E. G., M. E. Gomes, and R. L. Reis (2011) Cell delivery systems using alginate-carrageenan hydrogel beads and fibers for regenerative medicine applications. Biomacromolecules 12: 3952–3961.CrossRefGoogle Scholar
- 3.Matto, M. and Q. Husain (2009) Calcium alginate-starch hybrid support for both surface immobilization and entrapment of bitter gourd (Momordica charantia) peroxidase. J. Mol. Catal. B: Enzym. 57: 164–170.CrossRefGoogle Scholar
- 4.Betigeri, S. S. and S. H. Steven (2002) Immobilization of lipase using hydrophilic polymers in the form of hydrogel beads. Biomaterials 23: 3627–3636.CrossRefGoogle Scholar
- 5.Sangeetha, K. and T. E. Abraham (2008) Investigation on the development of sturdy bioactive hydrogel beads. J. Appl. Polym. Sci. 107: 2899–2908.CrossRefGoogle Scholar
- 6.Zhang, Z., R. Zhang, L. Chen, and D. J. McClements (2016) Encapsulation of lactase (β-galactosidase) into κ-carrageenanbased hydrogel beads: Impact of environmental conditions on enzyme activity. Food Chem. 200: 69–75.CrossRefGoogle Scholar
- 7.Jegannathan, K. R., E. S. Chan, and P. Ravindra (2009) Physical and stability characteristics of Burkholderia cepacia lipase encapsulated in κ-carrageenan. J. Mol. Catal. B. Enzym. 58: 78–83.CrossRefGoogle Scholar
- 8.Swatloski, R. P., S. K. Spear, J. D. Holbrey, and R. D. Rogers (2002) Dissolution of cellulose with ionic liquids. J. Am. Chem. Soc. 124: 4974–7975.CrossRefGoogle Scholar
- 9.Turner, M. B., S.K. Spear, J. D. Holbrey, and R. D. Rogers (2004) Production of bioactive cellulose films reconstituted from ionic liquids. Biomacromolucules 5: 1379–1384.CrossRefGoogle Scholar
- 10.Jo, S., Y. Oh, S. Park, E. Kan, and S. H. Lee (2017) Cellulose/carrageenan/TiO2 nanocomposite for adsorption and photodegradation of cationic dye. Biotechnol. Bioproc. Eng. 22: 734–738.CrossRefGoogle Scholar
- 11.Liu, Z., H. Wang, B. Li, Y. Jiang, G. Yu, and X. Mu (2012) Biocompatible magnetic cellulose-chitosan hybrid gel microspheres reconstituted from ionic liquids for enzyme immobilization. J. Mater. Chem. 22: 15085–15091.CrossRefGoogle Scholar
- 12.Peng, S., H. Meng, Y. Ouyang, and J. Chang (2014) Nanoporous magnetic cellulose-chitosan composite microspheres: preparation, characterization, and application for Cu(II) adsorption. Ind. Eng. Chem. Res. 53: 2106–2113.CrossRefGoogle Scholar
- 13.Rama, K., P. Senapati, and M. K. Das (2005) Formulation and in vitro evaluation of ethyl cellulose microspheres containing zidovudine. J. Microencapsul. 22: 863–876.CrossRefGoogle Scholar
- 14.Du, K. F., M. Yan, Q. Y. Wang, and H. Song (2010) Preparation and characterizaiton of novel macroporous cellulose beads regenerated from ionic liquid for fast chromatography. J. Chromatogr. A. 1217(2010): 1298–1304.CrossRefGoogle Scholar
- 15.Luo, X. and L. Zhang (2010) Immobilization of penicillin G acylase in epoxy-activated magnetic cellulose microspheres for improvement of biocatalytic stability and activities. Biomacromolecules 11: 2896–2903CrossRefGoogle Scholar
- 16.Park, S., S. H. Kim, J. H. Kim, H. Yu, H. J. Kim, Y. Yang, H. Kim, Y. H. Kim, S. H. Ha, and S. H. Lee (2015) Application of cellulose/lignin hydrogel beads as novel supports for immobilizing lipase. J. Mol. Catal. B. Enzym. 119: 33–39.CrossRefGoogle Scholar
- 17.Kim, H. J., J. N. Jin, E. Kan, K. J. Kim, and S. H. Lee (2017) Bacterial cellulose-chitosan composite hydrogel beads for enzyme immobilization. Biotechnol. Bioproc. Eng. 22: 89–94.CrossRefGoogle Scholar
- 18.Pei, Y., X. Wu, G. Xu, Z. Sun, X. Zheng, J. Liu, and K. Tang (2016) Tannin-immobilized cellulose microspheres as effective adsorbents for removing dye (methlylene blue) from aqueous solution. J. Chem. Technol. Biotechnol. 92: 1276–1284.CrossRefGoogle Scholar
- 19.Luo, X. and L. Zhang (2010) Creation of regenerated cellulose microspheres with diameter ranging from micron to millimeter for chromatography applications. J. Chromatogr. A. 1217: 5922–5929.CrossRefGoogle Scholar
- 20.Seema, S. B. and H. N. Steven (2002) Immobilization of lipase using hydrophilic polymers in the form of hydrogel beads. Biomaterials 23: 3627–3636.CrossRefGoogle Scholar
- 21.Shuai, W. T., R. K. Das, M. Naghdi, S. K. Brar, and M. Verma (2018) A review on the important aspects of lipase immobilization on nanomaterials. Appl. Biochem. Biotechnol. 64: 496–508.CrossRefGoogle Scholar
- 22.Kim, H. J., S. Park, S. H. Kim, J. H. Kim, H. J. Yu, H. J. Kim, Y. H. Yang, E. S. Kan, Y. H. Kim, and S. H. Lee (2015) Biocompatible cellulose nanocrystals as supports to immobilize lipase. J. Mol. Catal. B: Enzym. 122: 170–178.CrossRefGoogle Scholar
- 23.Mandal, S., S. Ghosh, C. Banerjee, J. Kuchlyan, D. Banik, and N. Sarkar (2013) A novel ionic liquid-in-oil microemulsion composed of biologically acceptable components: an excitation wavelength dependent fluorescence resonance energy transfer study. J. Phys. Chem. B. 117: 3221–3231.CrossRefGoogle Scholar
- 24.Davis, C. R., S. L. Kelly, and K. A. Erk (2018) Comparing laser diffraction and optical microscopy for characterizing superabsorbent polymer particle morphology, size, and swelling capacity. J. Appl. Polym. Sci. 135: 46055.CrossRefGoogle Scholar
- 25.Geluk, M. A., W. Norde, H. K. A. I. Van Kalsbeek, and K. Van’t Riet (1992) Adsorption of lipase from Candida rugosa on cellulose and its influence on lipolytic activity. Enzyme Microb. Technol. 14: 748–754.CrossRefGoogle Scholar