Advertisement

Biotechnology and Bioprocess Engineering

, Volume 23, Issue 5, pp 598–604 | Cite as

Immobilized Lipid Affinity Capture for Antimicrobial Peptides Screening

  • Hwang-Soo Joo
Research Paper

Abstract

A novel method for rapid screening of antimicrobial peptides (AMPs) was developed by using immobilized lipid affinity capture (ILAC) coupled with LC-MS. Phospholipid (PL) mixture containing phosphatidyl glycerol (PG): phosphatidyl ethanolamine (PE) (4:1), roughly mimic the PL composition of Gram-positive bacterial membrane, was covalently immobilized on magnetic particles (MPs). PL monolayer immobilized on MPs was used as a matrix for capturing of the membrane-disruptive AMPs. Hominicin, a new AMP against Gram-positive bacteria, was successfully captured by ILAC from the peptide pool of Staphylococcus hominis MBBL 2–9. The hominicin was identified by the comparative analysis of LC-MS 2Dprofiles of peptides captured by bare and PL-immobilized MPs. This is the first report for the development of rapid AMP screening method using lipid-immobilized MPs and LC-MS which will be a promising tool for discovery of various kinds of AMPs.

Keywords

antimicrobial peptides affinity capture phospholipids magnetic particle LC-MS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brogden, K. A. (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3: 238–250.Google Scholar
  2. 2.
    Zasloff, M. (2002) Antimicrobial peptides of multicellular organisms. Nature 415: 389–395.CrossRefGoogle Scholar
  3. 3.
    Cotter, P. D., C. Hill, and R. P. Ross (2005) Bacteriocins: developing innate immunity for food. Nat. Rev. Microbiol. 3: 777–788.CrossRefGoogle Scholar
  4. 4.
    Oren, Z. and Y. Shai (1998) Mode of action of linear amphipathic alpha-helical antimicrobial peptides. Biopolymers 47: 451–463.CrossRefGoogle Scholar
  5. 5.
    Breukink, E. and B. de Kruijff (2006) Lipid II as a target for antibiotics. Nat. Rev. Drug Discov. 5: 321–332.CrossRefGoogle Scholar
  6. 6.
    Yeaman, M. R. and N. Y. Yount (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 55: 27–55.CrossRefGoogle Scholar
  7. 7.
    Wu, M., E. Maier, R. Benz, and R. E. Hancock (1999) Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry 38: 7235–7242.CrossRefGoogle Scholar
  8. 8.
    Shai, Y. (1999) Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alphahelical antimicrobial and cell non-selective membrane-lytic peptides. Biochim. Biophys. Acta 1462: 55–70.CrossRefGoogle Scholar
  9. 9.
    Winkowski, K., R. D. Ludescher, and T. J. Montville (1996) Physiochemical characterization of the nisin-membrane interaction with liposomes derived from Listeria monocytogenes. Appl. Environ. Microbiol. 62: 323–327.Google Scholar
  10. 10.
    Zhang, L., A. Rozek, and R. E. Hancock (2001) Interaction of cationic antimicrobial peptides with model membranes. J. Biol. Chem. 276: 35714–35722.CrossRefGoogle Scholar
  11. 11.
    Xie, Q., S. Matsunaga, Z. Wen, S. Niimi, M. Kumano, Y. Sakakibara, and S. Machida (2006) In vitro system for highthroughput screening of random peptide libraries for antimicrobial peptides that recognize bacterial membranes. J. Pept. Sci. 12: 643–652.CrossRefGoogle Scholar
  12. 12.
    Pidgeon, C. and U. V. Venkataram (1989) Immobilized artificial membrane chromatography: supports composed of membrane lipids. Anal. Biochem. 176: 36–47.CrossRefGoogle Scholar
  13. 13.
    Taillardat-Bertschinger, A., P. A. Carrupt, F. Barbato, and B. Testa (2003) Immobilized artificial membrane HPLC in drug research. J. Med. Chem. 46: 655–665.CrossRefGoogle Scholar
  14. 14.
    Lundahl, P. and Q. Yang (1991) Liposome chromatography: liposomes immobilized in gel beads as a stationary phase for aqueous column chromatography. J. Chromatogr. 544: 283–304.CrossRefGoogle Scholar
  15. 15.
    Lundahl, P., C. M. Zeng, C. Lagerquist Hagglund, I. Gottschalk, and E. Greijer (1999) Chromatographic approaches to liposomes, proteoliposomes and biomembrane vesicles. J. Chromatogr. B Biomed. Sci. Appl. 722: 103–120.CrossRefGoogle Scholar
  16. 16.
    Oscariz, J. C. and A. G. Pisabarro (2001) Classification and mode of action of membrane-active bacteriocins produced by grampositive bacteria. Int. Microbiol. 4: 13–19.Google Scholar
  17. 17.
    Kim, P. I., J. K. Sohng, C. Sung, H. S. Joo, E. M. Kim, T. Yamaguchi, D. Park, and B. G. Kim (2010) Characterization and structure identification of an antimicrobial peptide, hominicin, produced by Staphylococcus hominis MBBL 2–9. Biochem. Biophys. Res. Commun. 399: 133–138.CrossRefGoogle Scholar
  18. 18.
    Tagg, J. R., A. S. Dajani, and L. W. Wannamaker (1976) Bacteriocins of gram-positive bacteria. Bacteriol. Rev. 40: 722–756.Google Scholar
  19. 19.
    Glukhov, E., M. Stark, L. L. Burrows, and C. M. Deber (2005) Basis for selectivity of cationic antimicrobial peptides for bacterial versus mammalian membranes. J. Biol. Chem. 280: 33960–33967.CrossRefGoogle Scholar
  20. 20.
    Clejan, S., T. A. Krulwich, K. R. Mondrus, and D. Seto-Young (1986) Membrane lipid composition of obligately and facultatively alkalophilic strains of Bacillus spp. J. Bacteriol. 168: 334–340.CrossRefGoogle Scholar
  21. 21.
    Dorman, G. and G. D. Prestwich (1994) Benzophenone photophores in biochemistry. Biochemistry 33: 5661–5673.CrossRefGoogle Scholar
  22. 22.
    Waugh, A. C. and P. F. Long (2002) Prospects for generating new antibiotics. Sci. Prog. 85: 73–88.CrossRefGoogle Scholar
  23. 23.
    Brown, E. D. and G. D. Wright (2005) New targets and screening approaches in antimicrobial drug discovery. Chem. Rev. 105: 759–774.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BiotechnologyDuksung Women’s UniversitySeoulKorea

Personalised recommendations