Advertisement

Biotechnology and Bioprocess Engineering

, Volume 23, Issue 5, pp 490–499 | Cite as

Discovery of a RuBisCO-like Protein that Functions as an Oxygenase in the Novel d-Hamamelose Pathway

  • Suk Min Kim
  • Hyun Seung Lim
  • Sun Bok Lee
Research Paper
  • 8 Downloads

Abstract

Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is the key catalyst of CO2 fixation in nature. RuBisCO forms I, II, and III catalyze CO2 fixation reactions, whereas form IV, also called the RuBisCO-like protein (RLP), is known to have no carboxylase or oxygenase activities. Here, we describe an RLP in Ochrobactrum anthropi ATCC 49188 (Oant_3067; HamA) that functions as an oxygenase in the metabolism of d-hamamelose, a branched-chain hexose found in most higher plants. The d-hamamelose pathway is comprised of five previously unknown enzymes: d-hamamelose dehydrogenase, d-hamamelono-lactonase, d-hamamelonate kinase, d-hamamelonate-2′,5-bisphosphate dehydrogenase (decarboxylating), and the RLP 3-keto-d-ribitol-1,5-bisphosphate (KRBP) oxygenase, which converts KRBP to 3-d-phosphoglycerate and phosphoglycolate. HamA represents the first RLP catalyzing the O2-dependent oxidative C–C bond cleavage reaction, and our findings may provide insights into its applications in oxidative cleavage of organic molecules.

Keywords

RuBisCO-like proteins oxygenase d-hamamelose metabolic pathway branched-chain sugar 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12257_2018_305_MOESM1_ESM.pdf (3.4 mb)
Discovery of a RuBisCO-like Protein that Functions as an Oxygenase in the Novel d-Hamamelose Pathway

References

  1. 1.
    Griffin, K. L. and J. R. Seemann (1996) Plants, CO2 and photosynthesis in the 21st century. Chem. Biol. 3: 245–254.CrossRefGoogle Scholar
  2. 2.
    Erb, T. J. and J. Zarzycki (2018) A short history of RubisCO: the rise and fall (?) of Nature’s predominant CO2 fixing enzyme. Curr. Op. Biotechnol. 49: 100–107.CrossRefGoogle Scholar
  3. 3.
    Ellis, R. J. (1979) The most abundant protein in the world. Trends Biochem. Sci. 4: 241–244.CrossRefGoogle Scholar
  4. 4.
    Tabita, F. R., T. E. Hanson, H. Y. Li, S. Satagopan, J. Singh, and S. Chan (2007) Function, structure, and evolution of the RubisCO-like proteins and their RubisCO homologs. Microbiol. Mol. Biol. Rev. 71: 576–599.CrossRefGoogle Scholar
  5. 5.
    Tabita, F. R., S. Satagopan, T. E. Hanson, N. E. Kreel, and S. S. Scott (2008) Distinct form I, II, III, and IV rubisco proteins from the three kingdoms of life provide clues about RuBisCO evolution and structure/function relationships. J. Exp. Bot. 59: 1515–1524.CrossRefGoogle Scholar
  6. 6.
    Ashida, H., Y. Saito, C. Kojima, K. Kobayashi, N. Ogasawara, and A. Yokota (2003) A functional link between RuBisCO-like protein of Bacillus and photosynthetic RuBisCO. Science 302: 286–290CrossRefGoogle Scholar
  7. 7.
    Erb, T. J., B. S. Evans, K. Cho, B. P. Warlick, J. Sriram, B. M. Wood, H. J. Imker, J. V. Sweedler, F. R. Tabita, and J. A. Gerlt (2012) A RubisCO-like protein links SAM metabolism with isoprenoid biosynthesis. Nat. Chem. Biol. 8: 926–932.CrossRefGoogle Scholar
  8. 8.
    Kim, S. M., K. H. Paek, and S. B. Lee (2012) Characterization of NADP+-specific L-rhamnose dehydrogenase from the thermoacidophilic Archaeon Thermoplasma acidophilum. Extremophiles 16: 447–454.CrossRefGoogle Scholar
  9. 9.
    Bae, J., S. M. Kim, and S. B. Lee (2015) Identification and characterization of 2-keto-3-deoxy-L-rhamnonate dehydrogenase belonging to the MDR superfamily from the thermoacidophilic bacterium Sulfobacillus thermosulfidooxidans: implications to Lrhamnose metabolism in archaea. Extremophiles 19: 469–478.CrossRefGoogle Scholar
  10. 10.
    Cho, S. J. and S. B. Lee (2014) Identification and characterization of 3, 6-anhydro-L-galactose dehydrogenases belonging to the aldehyde dehydrogenase superfamily from marine and soil microorganisms. Biotechnol. Bioprocess Eng. 19: 1058–1068.CrossRefGoogle Scholar
  11. 11.
    Lee, S. B., S. J. Cho, J. A. Kim, S. Y. Lee, S. M. Kim, and H. S. Lim (2014) Metabolic pathway of 3, 6-anhydro-L-galactose in agar-degrading microorganisms. Biotechnol. Bioprocess Eng. 19: 866–878.CrossRefGoogle Scholar
  12. 12.
    Lee, S. B., J. A. Kim, and H. S. Lim (2016) Metabolic pathway of 3,6-anhydro-D-galactose in carrageenan-degrading microorganisms. Appl. Microbiol. Biotechnol. 100: 4109–4121.CrossRefGoogle Scholar
  13. 13.
    Morinaga, T., H. Ashida, and K. Yoshida (2010) Identification of two scyllo-inositol dehydrogenases in Bacillus subtilis. Microbiology 156: 1538–1546.CrossRefGoogle Scholar
  14. 14.
    Johnsen, U., M. Dambeck, H. Zaiss, T. Fuhrer, J. Soppa, U. Sauer, and P. Schonheit (2009) D-xylose degradation pathway in the halophilic archaeon Haloferax volcanii. J. Biol. Chem. 284: 27290–27303.CrossRefGoogle Scholar
  15. 15.
    Geddes, B. A., B. S. Pickering, N. J. Poysti, H. Collins, H. Yudistira, and I. J. Oresnik (2010) A locus necessary for the transport and catabolism of erythritol in Sinorhizobium meliloti. Microbiology 156: 2970–2981.CrossRefGoogle Scholar
  16. 16.
    Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.CrossRefGoogle Scholar
  17. 17.
    Hricovíniová, Z., M. Hricovíni, and L. Petruš (1998) Stereospecific molybdic acid-catalyzed isomerization of D-fructose to branched-chain aldose. The synthesis of D-hamamelose. Chem. Papers 52: 692–698.Google Scholar
  18. 18.
    Moore, S. and K. P. Link (1940) Carbohydrate Characterization I. The oxidation of aldoses by hypoiodite in methanol, II. The identification of seven aldo-monosaccharides as benzimidazole derivatives. J. Biol. Chem. 133: 293–311.Google Scholar
  19. 19.
    Weimberg, R. (1959) L-2-Keto-4,5-dihydroxyvaleric acid: an intermediate in the oxidation of L-arabinose by Pseudomonas saccharophila. J. Biol. Chem. 234: 727–732.Google Scholar
  20. 20.
    Wu, J. T., L. H. Wu, and J. A. Knight (1986) Stability of NADPH: effect of various factors on the kinetics of degradation. Clin. Chem. 32: 314–319.Google Scholar
  21. 21.
    Kim, S. and S. B. Lee (2006) Characterization of Sulfolobus solfataricus 2-keto-3-deoxy-D-gluconate kinase in the modified Entner-Doudoroff pathway. Biosci. Biotechnol. Biochem. 70: 1308–1316.CrossRefGoogle Scholar
  22. 22.
    Gutteridge, S., M. A. J. Parry, S. Burton, A. J. Keys, A. Mudd, J. Feeney, J. C. Servaites, and J. Pierce (1986) A nocturnal inhibitor of carboxylation in leaves. Nature 324: 274.CrossRefGoogle Scholar
  23. 23.
    Ulrich, E. L., H. Akutsu, J. F. Doreleijers, Y. Harano, Y. E. Ioannidis, J. Lin, M. Livny, S. Mading, D. Maziuk, Z. Miller, E. Nakatani, C. F. Schulte, D. E. Tolmie, R. Kent Wenger, H. Yao, and J. L. Markley (2007) BioMagResBank. Nucleic Acids Res. 36: D402–D408.CrossRefGoogle Scholar
  24. 24.
    Beck, E., H. Stransky, and M. Fürbringer (1971) Synthesis of hamamelose-diphosphate by isolated spinach chloroplasts. FEBS Lett. 13: 229–234.CrossRefGoogle Scholar
  25. 25.
    Sellmair, J., E. Beck, O. Kandler, and A. Kress (1977) Hamamelose and its derivatives as chemotaxonomic markers in the genus Primula. Phytochemistry 16: 1201–1204.CrossRefGoogle Scholar
  26. 26.
    Yoshimura, J. (1984) Synthesis of branched-chain sugars. Carbohydr. Chem. Biochem. 42: 69–134.Google Scholar
  27. 27.
    Zhang, X., M. S. Carter, M. W. Vetting, B. San Francisco, S. Zhao, N. F. Al-Obaidi, J. O. Solbiati, J. J. Thiaville, V. de Crecy-Lagard, M. P. Jacobson, S. C. Almo, and J. A. Gerlt (2016) Assignment of function to a domain of unknown function: DUF1537 is a new kinase family in catabolic pathways for acid sugars. Proc. Natl. Acad. Sci. USA 113: E4161–4169.CrossRefGoogle Scholar
  28. 28.
    Logue, M. W., R. M. Pollack, and V. P. Vitullo (1975) Nature of the transition state for the decarboxylation of ß-keto acids. J. Am. Chem. Soc. 97: 6868–6869.CrossRefGoogle Scholar
  29. 29.
    Lorimer, G. H., T. J. Andrews, and N. E. Tolbert (1973) Ribulose diphosphate oxygenase. II. Further proof of reaction products and mechanism of action. Biochemistry 12: 18–23.CrossRefGoogle Scholar
  30. 30.
    Hartman, F. C. and M. R. Harpel (1994) Structure, function, regulation, and assembly of D-ribulose-1, 5-bisphosphate carboxylase/ oxygenase. Annu. Rev. Biochem. 63: 197–232.CrossRefGoogle Scholar
  31. 31.
    Tcherkez, G. (2016) The mechanism of rubisco-catalysed oxygenation. Plant Cell Environ. 39: 983–997.CrossRefGoogle Scholar
  32. 32.
    Portis, A. R. and M. A. Parry (2009) rubisco. In Encyclopedia of Life Sciences; John Wiley, Chichester, DOI: 10.1002/9780470015902.a0001293.pub2.Google Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringPohang University of Science and TechnologyPohangKorea

Personalised recommendations