Advertisement

Biotechnology and Bioprocess Engineering

, Volume 23, Issue 5, pp 605–616 | Cite as

Exploring Binding Mechanisms between Curcumin and Silkworm 30Kc19 Protein Using Spectroscopic Analyses and Computational Simulations

  • Md. Abdur Razzak
  • Ji Eun Lee
  • Hee Ho Park
  • Tai Hyun Park
  • Shin Sik Choi
Research Paper
  • 2 Downloads

Abstract

The curry compound, curcumin exerts multiple health-promotive functions; however, its poor solubility and stability limits its biological applications. In this study, we illuminate intermolecular binding mechanisms in the nano-sized complex of curcumin with silkworm protein, 30Kc19. The intrinsic fluorescence of 30Kc19 was gradually quenched by the increase of curcumin concentrations, which demonstrates molecule-molecule complexations mediated by the fluorophore amino acid residues (Tyr, Trp) in the protein. The fluorescence quenching showed that the binding occurred at 1:1 molar ratio with binding constant of 3.28 × 104 M-1. The results from scanning electron microscopy and dynamic light scattering indicate that the complexes were formed with cubicle shapes and sizes of 200–250 nm at pH 8.0 (zeta-potential < −20 mV). Along with Fourier transform infrared analysis, computational studies of protein-ligand docking simulation suggest a mechanism that curcumin and 30Kc19 forms complexes through specific amino acid residues (Trp174, Trp180, and Trp225) with minimum binding distance (4 Å). The complexation of curcumin with 30Kc19 protein effectively suppressed the degradation of curcumin over 10 h and improved its antioxidant activity up to 30%. These findings suggest an application of 30Kc19 for the delivery of waterinsoluble bioactive medicines.

Keywords

curcumin 30Kc19 protein protein-ligand complex stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goel, A., A. B. Kunnumakkara, and B. B. Aggarwal (2008) Curcumin as “Curecumin”: from kitchen to clinic. Biochem. Pharmacol. 75: 787–809.CrossRefGoogle Scholar
  2. 2.
    Ruby, A. J., G. Kuttan, K. D. Babu, K. N. Rajasekharan, and R. Kuttan (1995) Anti-tumour and antioxidant activity of natural curcuminoids. Cancer Lett. 94: 79–83.CrossRefGoogle Scholar
  3. 3.
    Wang, J., H. Wang, R. Zhu, Q. Liu, J. Fei, and S. Wang (2015) Anti-inflammatory activity of curcumin-loaded solid lipid nanoparticles in IL-1ß transgenic mice subjected to the lipopolysaccharide-induced sepsis. Biomaterials 53: 475–483.CrossRefGoogle Scholar
  4. 4.
    Gong, C., S. Deng, Q. Wu, M. Xiang, X. Wei, L. Li, X. Gao, B. Wang, L. Sun, Y. Chen, Y. Li, L. Liu, Z. Qian, and Y. Wei (2013) Improving antiangiogenesis and anti-tumor activity of curcumin by biodegradable polymeric micelles. Biomaterials 34: 1413–1432.CrossRefGoogle Scholar
  5. 5.
    Tang, H., C. J. Murphy, B. Zhang, Y. Shen, E. A. Van Kirk, W. J. Murdoch, and M. Radosz (2010) Curcumin polymers as anticancer conjugates. Biomaterials 31: 7139–7149.CrossRefGoogle Scholar
  6. 6.
    Cheng, K. K., P. S. Chan, S. Fan, S. M. Kwan, K. L. Yeung, Y. X. J. Wang, A. H. L. Chow, E. X. Wu, and L. Baum (2015) Curcumin-conjugated magnetic nanoparticles for detecting amyloid plaques in Alzheimer’s disease mice using magnetic resonance imaging (MRI). Biomaterials 44: 155–172.CrossRefGoogle Scholar
  7. 7.
    Yang, M., Y. Wu, J. Li, H. Zhou, and X. Wang (2013) Binding of curcumin with bovine serum albumin in the presence of ω- carrageenan and implications on the stability and antioxidant activity of curcumin. J. Agric. Food Chem. 61: 7150–7155.CrossRefGoogle Scholar
  8. 8.
    Esatbeyoglu, T., P. Huebbe, I. M. Ernst, D. Chin, A. E. Wagner, and G. Rimbach (2012) Curcumin-from molecule to biological function. Angew. Chemie Int. Ed. 51: 5308–5332.CrossRefGoogle Scholar
  9. 9.
    Gupta, S. C., S. Prasad, J. H. Kim, S. Patchva, L. J. Webb, I. K. Priyadarsini, and B. B. Aggarwal (2011) Multitargeting by curcumin as revealed by molecular interaction studies. Nat. Prod. Rep. 28: 1937–1955.CrossRefGoogle Scholar
  10. 10.
    Esmaili, M., S. M. Ghaffari, Z. Moosavi-Movahedi, M. S. Atri, A. Sharifizadeh, M. Farhadi, R. Yousefi, J. M. Chobert, T. Haertlé, and A. A. Moosavi-Movahedi (2011) Beta casein-micelle as a nano vehicle for solubility enhancement of curcumin; food industry application. LWT - Food Sci. Technol. 44: 2166–2172.CrossRefGoogle Scholar
  11. 11.
    Wang, Y. J., M. H. Pan, A. L. Cheng, L. I. Lin, Y. S. Ho, C. Y. Hsieh, and J. K. Lin (1997) Stability of curcumin in buffer solutions and characterization of its degradation products. J. Pharm. Biomed. Anal. 15: 1867–1876.CrossRefGoogle Scholar
  12. 12.
    Yazdi, S. R. and M. Corredig (2012) Heating of milk alters the binding of curcumin to casein micelles. A fluorescence spectroscopy study. Food Chem. 132: 1143–1149.Google Scholar
  13. 13.
    Sneharani, A. H., J. V. Karakkat, S. A. Singh, and A. A. Rao (2010) Interaction of curcumin with ß-lactoglobulin stability, spectroscopic analysis, and molecular modeling of the complex. J. Agric. Food Chem. 58: 11130–11139.CrossRefGoogle Scholar
  14. 14.
    Tapal, A. and P. K. Tiku (2012) Complexation of curcumin with soy protein isolate and its implications on solubility and stability of curcumin. Food Chem. 130: 960–965.CrossRefGoogle Scholar
  15. 15.
    Bourassa, P., C. D. Kanakis, P. Tarantilis, M. G. Pollissiou, and H. A. Tajmir-Riahi (2010) Resveratrol, genistein, and curcumin bind bovine serum albumin. J. Phys. Chem. B 114: 3348–3354.CrossRefGoogle Scholar
  16. 16.
    Park, H. H., Y. Sohn, J. W. Yeo, J. H. Park, H. J. Lee, J. Ryu, W. J. Rhee, and T. H. Park (2014) Dimerization of 30Kc19 protein in the presence of amphiphilic moiety and importance of Cys-57 during cell penetration. Biotechnol. J. 9: 1582–1593.CrossRefGoogle Scholar
  17. 17.
    Yang, J. P., X. X. Ma, Y. X. He, W. F. Li, Y. Kang, R. Bao, Y. Chen, and C. Z. Zhou (2011) Crystal structure of the 30 K protein from the silkworm Bombyx mori reveals a new member of the ß-trefoil superfamily. J. Struct. Biol. 175: 97–103.CrossRefGoogle Scholar
  18. 18.
    Ryu, J., H. H. Park, J. H. Park, H. J. Lee, W. J. Rhee, and T. H. Park (2016) Soluble expression and stability enhancement of transcription factors using 30Kc19 cell-penetrating protein. Appl. Microbiol. Biotechnol. 100: 3523–3532.CrossRefGoogle Scholar
  19. 19.
    Kim, E. J., W. J. Rhee, and T. H. Park (2004) Inhibition of apoptosis by a Bombyx mori gene. Biotechnol. Prog. 20: 324–329.CrossRefGoogle Scholar
  20. 20.
    Choi, S. S., Rhee, W. J. and Park, T. H. (2005) Beneficial effect of silkworm hemolymph on a CHO cell system: Inhibition of apoptosis and increase of EPO production. Biotechnol. Bioeng. 91: 793–800.CrossRefGoogle Scholar
  21. 21.
    Lee, H. J., H. H. Park, J. A. Kim, J. H. Park, J. Ryu, J. Choi, J. Lee, W. J. Rhee, and T. H. Park (2014) Enzyme delivery using the 30Kc19 protein and human serum albumin nanoparticles. Biomaterials. 35: 1696–1704.CrossRefGoogle Scholar
  22. 22.
    Park, J. H., J. H. Lee, H. H. Park, W. J. Rhee, S. S. Choi, and T. H. Park (2012) A protein delivery system using 30Kc19 cell-penetrating protein originating from silkworm. Biomaterials 33: 9127–9134.CrossRefGoogle Scholar
  23. 23.
    Li, M., Y. Ma, and M. O. Ngadi (2013) Binding of curcumin to ß-lactoglobulin and its effect on antioxidant characteristics of curcumin. Food Chem. 141: 1504–1511.CrossRefGoogle Scholar
  24. 24.
    Jahanban-Esfahlan, A. and V. Panahi-Azar (2016) Interaction of glutathione with bovine serum albumin: Spectroscopy and molecular docking. Food Chem. 202: 426–431.CrossRefGoogle Scholar
  25. 25.
    Schneidman-Duhovny, D., Y. Inbar, R. Nussinov, and H. Wolfson (2005) Nucleic Acids Res. Web Server issue: 363–367.Google Scholar
  26. 26.
    Raza, M., A. Ahmad, F. Yue, Z. Khan, Y. Jiang, Y. Wei, S. Raza, W. W. He, F. U. Khan, and Y. Qipeng (2017) Biophysical and molecular docking approaches for the investigation of biomolecular interactions between amphotericin B and bovine serum albumin. J. Photochem. Photobiol. B Biol. 170: 6–15.CrossRefGoogle Scholar
  27. 27.
    Salentin, S., S. Schreiber, V. J. Haupt, M. F. Adasme, and M. Schroeder (2015) PLIP: fully automated protein–ligand interaction profiler. Nucleic Acids Res. 43: 443–447.CrossRefGoogle Scholar
  28. 28.
    Humphrey, W., A. Dalke, and K. Schulten (1996) VMD: visual molecular dynamics. J. Mol. Graph. 14: 33–38.CrossRefGoogle Scholar
  29. 29.
    DeLano, W. L (2002) Pymol: An open-source molecular graphics tool. CCP4 Newslett. Protein Crystallogr. 40: 82–92.Google Scholar
  30. 30.
    You, J. S., S. Jeon, Y. J. Byun, S. Koo, and S. S. Choi (2015) Enhanced biological activity of carotenoids stabilized by phenyl groups. Food Chem. 177: 339–345.CrossRefGoogle Scholar
  31. 31.
    Zhou, H., Q. Yang, and X. Wang (2014) Spectrometric study on the binding of curcumin with AOT: Effect of micelle-to-vesicle transition. Food Chem. 161: 136–141.CrossRefGoogle Scholar
  32. 32.
    Ke, D., X. Wang, Q. Yang, Y. Niu, S. Chai, Z. Chen, X. An, and W. Shen (2011) Spectrometric study on the interaction of dodecyltrimethylammonium bromide with curcumin. Langmuir 27: 14112–14117.CrossRefGoogle Scholar
  33. 33.
    Singh, P. K., V. Kotia, D. Ghosh, G. M. Mohite, A. Kumar, and S. K. Maji (2012) Curcumin modulates a-synuclein aggregation and toxicity. ACS Chem. Neurosci. 4: 393–407.CrossRefGoogle Scholar
  34. 34.
    Lakowicz, J.R. (2006) Principles of Fluorescence Spectroscopy. 3rd edition., pp. 277–330. Springer US, Boston, USA.CrossRefGoogle Scholar
  35. 35.
    Wang, R. Q., Y. J. Yin, H. Li, Y. Wang, J. J. Pu, R. Wang, H. J. Dou, C. J. Song, and R. Y. Wang (2013) Comparative study of the interactions between ovalbumin and three alkaloids by spectrofluorimetry. Mol. Biol. Rep. 40: 3409–3418.CrossRefGoogle Scholar
  36. 36.
    Ognjenovic, J., M. Stojadinovic, M. Milcic, D. Apostolovic, J. Vesic, I. Stambolic, M. Atanaskovic-Markovic, M. Simonovic, and T. C. Velickovic (2014) Interactions of epigallo-catechin 3-gallate and ovalbumin, the major allergen of egg white. Food Chem. 164: 36–43.CrossRefGoogle Scholar
  37. 37.
    Mandeville, J. S., E. Froehlich, and H. A. Tajmir-Riahi (2009) Study of curcumin and genistein interactions with human serum albumin. J. Pharm. Biomed. Anal. 49: 468–474.CrossRefGoogle Scholar
  38. 38.
    Mohammadi, F. and M. Moeeni (2015) Study on the interactions of trans-resveratrol and curcumin with bovine a-lactalbumin by spectroscopic analysis and molecular docking. Mater. Sci. Eng. C 50: 358–366.CrossRefGoogle Scholar
  39. 39.
    Peng, X., X. Wang, W. Qi, R. Huang, R. Su, and Z. He (2015) Deciphering the binding patterns and conformation changes upon the bovine serum albumin–rosmarinic acid complex. Food Funct. 6: 2712–2726.CrossRefGoogle Scholar
  40. 40.
    He, Z., M. Xu, M. Zeng, F. Qin, and J. Chen (2016) Interactions of milk a-and ß-casein with malvidin-3-O-glucoside and their effects on the stability of grape skin anthocyanin extracts. Food Chem. 199: 314–322.CrossRefGoogle Scholar
  41. 41.
    Bouraßsa, P., J. Bariyanga, and H. A. Tajmir-Riahi (2013) Binding sites of resveratrol, genistein, and curcumin with milk a- and ß-caseins. J. Phys. Chem. B 117: 1287–1295.CrossRefGoogle Scholar
  42. 42.
    Pu, H., H. Jiang, R. Chen, and H. Wang (2014) Studies on the interaction between vincamine and human serum albumin: A spectroscopic approach. Luminescence 29: 471–479.CrossRefGoogle Scholar
  43. 43.
    Farrokhpour, H., V. Pakatchian, A. Hajipour, F. Abyar, A. N. Chermahini, and F. Fakhari (2015) Protein–ligand interaction study of signal transducer smoothened protein with different drugs: molecular docking and QM/MM calculations. RSC Adv. 5: 68829–68838.CrossRefGoogle Scholar
  44. 44.
    von Staszewski, M., F. L. Jara, A. L. Ruiz, R. J. Jagus, J. E. Carvalho, and A. M. Pilosof (2012) Nanocomplex formation between ß-lactoglobulin or caseinomacropeptide and green tea polyphenols: Impact on protein gelation and polyphenols antiproliferative activity. J. Funct. Foods 4: 800–809.CrossRefGoogle Scholar
  45. 45.
    Leung, M. H. M., H. Colangelo, and T. W. Kee (2008) Encapsulation of curcumin in cationic micelles suppresses alkaline hydrolysis. Langmuir 24: 5672–5675.CrossRefGoogle Scholar
  46. 46.
    Sadat, L., C. Cakir-Kiefer, M. A. N’Negue, J. L. Gaillard, J. M. Girardet, and L. Miclo (2011) Isolation and identification of antioxidative peptides from bovine a-lactalbumin. Int. Dairy J. 21: 214–221.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Md. Abdur Razzak
    • 1
  • Ji Eun Lee
    • 2
  • Hee Ho Park
    • 3
  • Tai Hyun Park
    • 4
  • Shin Sik Choi
    • 1
    • 2
  1. 1.Department of Energy Science and TechnologyMyongji UniversityYonginKorea
  2. 2.Department of Food and NutritionMyongji UniversityYonginKorea
  3. 3.Department of Biotechnology and BioengineeringKangwon National UniversityChuncheonKorea
  4. 4.School of Chemical and Biological EngineeringSeoul National UniversitySeoulKorea

Personalised recommendations