Biotechnology and Bioprocess Engineering

, Volume 23, Issue 5, pp 550–556 | Cite as

Optimization of Cell Disruption and Transesterification of Lipids from Botryococcus braunii LB572

  • Geun Ho Gim
  • Si Wouk KimEmail author
Research Paper


Several methods including microwave, Frenchpress, autoclave, bead-beating, ultrasonication, and osmotic shock were compared to identify the most effective microalgal cell disruption method. Botryococcus braunii LB572 was cultured in 5 L flasks containing JM medium mixed with oceanic sediment extract for 13 days. Among the methods tested, enhanced lipid extraction was achieved through microwave treatment (2450MHz, 1250W at 150°C for 20 min). Oleic (C18:1), linolenic (C18:3), and palmitic acids (C16:0) were found to be the major fatty acids among the C14-C24 acids from extracted lipid. In addition, the optimal conditions of transesterification were as follows: 70 mL of methanol, 6 mL of sulfuric acid, 8 mL of chloroform, and boiling at 100°C for 30 min; 85.4% of C14-C24 FAME and 78.5% of C16-C18 FAME were esterified from transesterifiable lipids.


Botryococcus braunii cell disruption lipid extraction transesterification FAME 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chisti, Y. (2007) Biodiesel from microalgae. Biotechnol. Adv. 25: 294–306.CrossRefGoogle Scholar
  2. 2.
    Günerken, E., E. D’Hondt, H. M. Eppink, L. Garcia-Gonzalez, K. Elst, and R. H. Wijffels (2015) Cell disruption for microalgae biorefineries. Biotechnol. Adv. 33: 243–260.CrossRefGoogle Scholar
  3. 3.
    Lee, Y. C., K. Lee, and Y. K. Oh (2015) Recent nanoparticle engineering advances in microalgal cultivation and harvesting processes of biodiesel production: a review. Bioresour. Technol. 184: 63–72.CrossRefGoogle Scholar
  4. 4.
    Ehimen E., Z. Sun, and C. Carrington (2010) Variables affecting the in situ transesterification of microalgae lipids. Fuel 89: 677–684.CrossRefGoogle Scholar
  5. 5.
    Kim, J., G. Yoo, H. Lee, J. Lim, K. Kim, C. W. Kim, M. S. Park, and J. W. Yang (2013) Methods of downstream processing for the production of biodiesel from microalgae. Biotechnol. Adv. 31: 862–876.CrossRefGoogle Scholar
  6. 6.
    Thompson, A. S., J. C. Rhodes, and I. Pettman (1988) Natural environmental research council culture collection of algae and protozoa: catalogue of strains, Freshwater Biological Association. Ambleside, UK.Google Scholar
  7. 7.
    Gim, G. H. and S. W. Kim (2018) Growth factors in oceanic sediment significantly stimulate the biomass and lipid production of two oleaginous microalgae. J. Appl. Phycol. Google Scholar
  8. 8.
    Folch, J., M. Lees, and G. H. S. Stanley (1957) A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226: 497–509.Google Scholar
  9. 9.
    Metcalfe, L. D., A. A. Schmitz, and J. R. Pelka (1966) Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis. Anal. Chem. 38: 514–515.CrossRefGoogle Scholar
  10. 10.
    Hidalgo, P., G. Ciudad, S. Schober, M. Mittelbach, and R. Navia (2015) Biodiesel synthesis by direct transesterification of microalga Botryococcus braunii with continuous methanol reflux. Bioresour. Biotechnol. 181: 32–39.CrossRefGoogle Scholar
  11. 11.
    Engler, C. R. (1985) Disruption of microbial cells. pp. 305–324. In: Moo-Young M. (2nd ed.). Comprehensive Biotechnology, Pergamon Press, Oxford. UK.Google Scholar
  12. 12.
    Sheng, J., R. Vannela, and B. E. Rittman (2012) Disruption of Synechocystis PCC6803 for lipid extraction. Water Sci. Technol. 65: 567–573.CrossRefGoogle Scholar
  13. 13.
    Lee, S. J., B. D. Yoon, and H. M. Oh (1998) Rapid method for the determination of lipid from the green alga Botryococcus braunii. Biotechnol. Tech. 12: 553–556.CrossRefGoogle Scholar
  14. 14.
    Doucha, J. and K. Lívanský (2008) Influence of processing parameters on disintegration of Chlorella cells in various types of homogenizers. Appl. Microbiol. Biotechnol. 81: 431–440.CrossRefGoogle Scholar
  15. 15.
    Blifernez-Klassen, O., C. Swapnil, K. Viktor, W. Robin, S. Tim, C. Dominik, N. Karsten, K. Jörn, and K. Olaf (2018) Metabolic survey of Botryococcus braunii: Impact of the physiological state on product formation. PLoS One Scholar
  16. 16.
    Vanderheiden, G. J., A. C. Fairchild, and G. R. Jago (1970) Construction of a laboratory press for use with the French pressure cell. Appl. Microbiol. 19: 875–877.Google Scholar
  17. 17.
    Virot, M., V. Tomao, C. Ginies, F. Visinoni, and F. Chemat (2008) Microwave-integrated extraction of total fats and oils. J. Chromatogr. A 1196–1197: 57–64.CrossRefGoogle Scholar
  18. 18.
    Vasavada, P. C. (1986) Effect of microwave energy on bacteria. J. Microwave Power 21: 187–188.Google Scholar
  19. 19.
    Prabakaran, P. and D. Ravindran (2011) A comparative study on effective cell disruption methods for lipid extraction from microalgae. Lett. Appl. Microbiol. 53: 150–154.CrossRefGoogle Scholar
  20. 20.
    Zheng, H., J. Yin, Z. Gao, H. Huang, X. Ji, and C. Dou (2011) Disruption of Chlorella vulgaris cells for the release of biodieselproducing lipids: a comparison of grinding, ultrasonication, bead milling, enzymatic lysis, and microwaves. Appl. Biochem. Biotechnol. 164: 1215–1224.CrossRefGoogle Scholar
  21. 21.
    Sharma, Y. C., B. Singh, and S. N. Upadhyay (2008) Advancement in development and characterization of biodiesel: a review. Fuel 87: 2355–2373.CrossRefGoogle Scholar
  22. 22.
    Singh, B., A. Gulhe, I. Rawat, and F. Bux (2014) Towards a sustainable approach for development of biodiesel from plant and microalgae. Renew Sustain. Energy Rev. 29: 216–245.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Environmental EngineeringChosun UniversityGwangjuKorea
  2. 2.Green Energy InstituteMokpoKorea

Personalised recommendations