Advertisement

Biotechnology and Bioprocess Engineering

, Volume 23, Issue 5, pp 481–489 | Cite as

Characterization of ELP-fused ω-Transaminase and Its Application for the Biosynthesis of β-Amino Acid

  • Hyunwoo Jeon
  • Sharad Sarak
  • Sang-Hyuk Lee
  • Han-Seop Bea
  • Mahesh Patil
  • Geon-Hee Kim
  • Byung-Gee Kim
  • Jong In Won
  • Hyungdon Yun
Research Paper
  • 5 Downloads

Abstract

Optically pure amines, β-amino acids and γ-amino acids are the valuable precursors to produce biologically active compounds. The ω-TAs are the class of enzymes which are widely used to produce such compounds. In this work (S)-ω-transaminase from the thermophilic eubacterium Sphaerobacter thermophilus (St-TA) was fused with Elastin-like polypeptides (ELPs) through the cloning process and expressed in E. coli cells. The characterization of this fusion complex was performed with respect to thermostability and effect of DMSO. Where in case of St-TA-ELP-V60, major difference in the transition temperature (Tt) was observed, wherein a Tt of 38 and 70°C was observed at the increasing concentration of DMSO from 5 to 25% (v/v). Interestingly, these fusion proteins the activity was preserved even after the aggregation of fusion complex at Tt. The substrate specificity and product inhibition analysis showed that ω-TA-ELPs had comparable results as that of wild type ω-TA. Moreover, the fused ω-TA could be efficiently reused for up to 20 batches of transamination reaction. Furthermore, the applicability of the fusion protein for the production of a sitagliptin precursor (R)-3-amino-4-(2,4,5-triflurophenyl) butanoic acid (3-ATfBA) was evaluated, wherein 3-ATfBA was synthesized with good conversion (65%).

Keywords

(S)-ω-transaminase elastin-like polypeptides chiral amines bio-catalysis thermostability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kohls, H., F. Steffen-Munsberg, and M. Hohne (2014) Recent achievements in developing the biocatalytic toolbox for chiral amine synthesis. Curr. Opin. Chem. Biol. 19: 180–192.CrossRefGoogle Scholar
  2. 2.
    Mathew, S. and H. Yun (2012) ω-Transaminases for the production of optically pure amines and unnatural amino acids. ACS Catal. 2: 993–1001.CrossRefGoogle Scholar
  3. 3.
    Slabu, I., J. L. Galman, R. C. Lloyd, and N. J. Turner (2017) Discovery, engineering, and synthetic application of transaminase biocatalysts. ACS Catal. 7: 8263–8284.CrossRefGoogle Scholar
  4. 4.
    Patil, M. D., G. Grogan, A. Bommarius, and H. Yun (2018) Recent advances in ω-transaminase-mediated biocatalysis for the enantioselective synthesis of chiral amines. Catalysts 8: 254.CrossRefGoogle Scholar
  5. 5.
    Ahsan, M. M., S. Sung, H. Jeon, M. D. Patil, T. Chung, and H. Yun (2017) Biosynthesis of medium-to long-chain a,ω-diols from free fatty acids using CYP153A monooxygenase, carboxylic acid reductase, and E. coli endogenous aldehyde reductases. Catalysts 8: 4.Google Scholar
  6. 6.
    Ahsan, M. M., H. Jeon, S. P. Nadarajan, T. Chung, H. W. Yoo, B. G. Kim, M. D. Patil, and H. Yun (2018) Biosynthesis of the nylon 12 monomer, ω-amino dodecanoic acid with novel CYP153A, AlkJ, and ω-TA enzymes. Biotechnol. J. 13: 1700562.CrossRefGoogle Scholar
  7. 7.
    Park, E. S., M. Kim, and J. S. Shin (2012) Molecular determinants for substrate selectivity of ω-transaminases. Appl. Microbiol. Biotechnol. 93: 2425–2435.CrossRefGoogle Scholar
  8. 8.
    Harald, G., H. Trauthwein, S. Buchholz, K. Drauz, C. Sacherer, S. Godfrin, and H. Werner (2004) The first amino acylasecatalyzed enantioselective synthesis of aromatic ß-amino acids. Org. Biomol. Chem. 2: 1977–1978CrossRefGoogle Scholar
  9. 9.
    Tobias, H., D. Seebach, S. Oßswald, M. K. Wiel, H. P. Kohler, and B. Geueke (2009) Kinetic resolution of aliphatic ß-amino acid amides by ß-aminopeptidases. ChemBioChem 10: 1558–1561.CrossRefGoogle Scholar
  10. 10.
    Wu, B., W. Szymanski, P. Wietzes, S. de Wildeman, G. J. Poelarends, B. L. Feringa, and D. B. Janßsen (2009) Enzymatic synthesis of enantiopure a-and ß-amino acids by phenylalanine aminomutase-catalyzed amination of cinnamic acid derivatives. ChemBioChem 10: 338–344.CrossRefGoogle Scholar
  11. 11.
    Yun, H., S. Y. Lim, B. K. Cho, and B.G. Kim (2004) ω-Amino acid: pyruvate transaminase from Alcaligenes denitrificans Y2k-2: a new catalyst for kinetic resolution of ß-amino acids and amines. Appl. Environ. Microbiol. 70: 2529–2534.CrossRefGoogle Scholar
  12. 12.
    Mathew, S., H. Bea, S. P. Nadarajan, T. Chung, and H. Yun (2015) Production of chiral ß-amino acids using ω-transaminase from Burkholderia graminis. J. Biotechnol. 196: 1–8.CrossRefGoogle Scholar
  13. 13.
    Bea, H. S., H. J. Park, S. H. Lee, and H. Yun (2011) Kinetic resolution of aromatic ß-amino acids by ω-transaminase. Chem. Commun. 47: 5894–5896.CrossRefGoogle Scholar
  14. 14.
    Malik, M. S., E. S. Park, and J. S. Shin (2012) Features and technical applications of ω-transaminases. Appl. Microbiol. Biotechnol. 94: 1163–1171.CrossRefGoogle Scholar
  15. 15.
    Iwasaki, A., K. Matsumoto, J. Hasegawa, and Y. Yasohara (2012) A novel transaminase, (R)-amine: pyruvate aminotransferase, from Arthrobacter sp. KNK168 (FERM BP-5228): purification, characterization, and gene cloning. Appl. Microbiol. Biotechnol. 93: 1563–1573.Google Scholar
  16. 16.
    Simon, R. C., N. Richter, E. Busto, and W. Kroutil (2013) Recent developments of cascade reactions involving ω-transaminases. ACS Catal. 4: 129–143.CrossRefGoogle Scholar
  17. 17.
    Lyskowski, A., C. Gruber, G. Steinkellner, M. Schurmann, H. Schwab, K. Gruber, and K. Steiner (2014) Crystal structure of an (R)-selective ω-transaminase from Aspergillus terreus. PLoS One 9: 1–11.CrossRefGoogle Scholar
  18. 18.
    Shin, G., S. Mathew, M. Shon, B. G. Kim, and H. Yun (2013) One-pot one-step deracemization of amines using ω-transaminases. Chem. Commun. 49: 8629–8631CrossRefGoogle Scholar
  19. 19.
    Rudat, J., B. R. Brucher, and C. Syldatk (2012) Transaminases for the synthesis of enantiopure beta-amino acids. AMB Expr. 2: 11.CrossRefGoogle Scholar
  20. 20.
    Weiner, B., W. Szymanski, D. B. Janßsen, A. J. Minnaard, and B. L. Feringa (2010) Recent advances in the catalytic asymmetric synthesis of ß-amino acids, Chem. Soc. Rev. 39: 1656–1691.CrossRefGoogle Scholar
  21. 21.
    Ordonez, M. and C. Cativiela (2007) Stereoselective synthesis of ω-amino acids. Tetrahedron-Asymmetry 18: 3–99.CrossRefGoogle Scholar
  22. 22.
    Koszelewski, D., K. Tauber, K. Faber, and W. Kroutil (2010) ω-Transaminases for the synthesis of non-racemic a-chiral primary amines. Trends Biotechnol. 28: 324–332.CrossRefGoogle Scholar
  23. 23.
    Shon, M., R. Shanmugavel, G. Shin, S. Mathew, S. H. Lee, and H. Yun (2014). Enzymatic synthesis of chiral ω-amino acids using ω-transaminase. Chem. Commun. 50: 12680–12683.CrossRefGoogle Scholar
  24. 24.
    Mutti, F. G., C. S. Fuchs, D. Pressnitz, J. H. Sattler, and W. Kroutil (2011) Stereoselectivity of four (R)-selective transaminases for the asymmetric amination of ketones. Adv. Synth. Catal. 353: 3227–3233CrossRefGoogle Scholar
  25. 25.
    Meyer, D. E. and A. Chilkoti (2002) Genetically encoded synthesis of protein-based polymers with precisely specified molecular weight and sequence by recursive directional ligation: examples from the elastin-like polypeptide system. Biomacromolecules 3: 357–367.CrossRefGoogle Scholar
  26. 26.
    Urry, D. W. (1997) Physical chemistry of biological free energy transduction as demonstrated by elastic protein-based polymers, J. Phys. Chem. B 101: 11007–11028.CrossRefGoogle Scholar
  27. 27.
    Gao, Q., Y. Fu, Y. Peng, W. Liu, and W. Feng (2016) Geneticallymodified R-ω-transaminase: purification and self-assembly facilitating interaction with substrate droplets. Biotechnol. Lett. 38: 489–494.CrossRefGoogle Scholar
  28. 28.
    McPherson, D. T., J. Xu, and D. W. Urry (1996) Product purification by reversible phase transition following Escherichia coli expression of genes encoding up to 251 repeats of the elastomeric pentapeptide GVGVP, Protein Exp. Purif. 7: 51–57.CrossRefGoogle Scholar
  29. 29.
    Mallin, H., U. Menyes, T. Vorhaben, M. Hohne, and U. T. Bornscheuer (2013) Immobilization of two (R)-amine transaminases on an optimized chitosan support for the enzymatic synthesis of optically pure amines. ChemCatChem. 5: 588–593.CrossRefGoogle Scholar
  30. 30.
    Ramisetti, A., J. M. R. Boggu, P. Shekhar, and B. V. Subba Reddy (2016) Stereoselective synthesis of dipeptidyl peptidase-4 (DPP-4) inhibitor, (R)-sitagliptin. Chem. Select. 1: 5445–5447.Google Scholar
  31. 31.
    Mathew, S., S. S. Jeong, T. Chung, S. H. Lee, and H. Yun (2016) Asymmetric synthesis of aromatic ß-amino acids using ω-transaminase: Optimizing the lipase concentration to obtain thermodynamically unstable ß-keto acids. Biotechnol. J. 11: 185–190.CrossRefGoogle Scholar
  32. 32.
    Mathew, S., S. P. Nadarajan, T. Chung, H. H. Park, and H. Yun (2016) Biochemical characterization of thermostable ω- transaminase from Sphaerobacter thermophilus and its application for producing aromatic ß-and ω-amino acids. Enzyme Microb. Technol. 87: 52–60.CrossRefGoogle Scholar
  33. 33.
    Meyer, D. E., K. Trabbic Carlson, and A. Chilkoti (2001). Protein purification by fusion with an environmentally responsive elastin-like polypeptide: effect of polypeptide length on the purification of thioredoxin. Biotechnol. Prog. 17: 720–728.CrossRefGoogle Scholar
  34. 34.
    Wang, E., S. H. Lee, and S. W. Lee (2011) Elastin-like polypeptidebased hydroxyapatite bio-nanocomposites. Biomacromolecules 12: 672–680.CrossRefGoogle Scholar
  35. 35.
    Deepankumar, K., N. S. Prabhu, J. H. Kim, and H. Yun (2017). Protein engineering for covalent immobilization and enhanced stability through incorporation of multiple noncanonical amino acids. Biotechnol. Bioprocess Eng. 22: 248–255.CrossRefGoogle Scholar
  36. 36.
    Sun, J., K. Du, X. Q. Song, Q. Gao, H. Wu, J. J. Ma, P. J. Ji, and W. Feng (2015) Specific immobilization of D-amino acid oxidase on hematin-functionalized support mimicking multi-enzyme catalysis. Green Chem. 17: 4465–4472CrossRefGoogle Scholar
  37. 37.
    Catherine, C., S. J. Oh, K. H. Lee, S. E. Min, J. I. Won, H. Yun, and D. M. Kim (2015) Engineering thermal properties of elastinlike polypeptides by incorporation of unnatural amino acids in a cell-free protein synthesis system. Biotechnol. Bioprocess Eng. 20: 417–422.CrossRefGoogle Scholar
  38. 38.
    Choi, H., H. S. Chu, M. Chung, B. Kim, and J. I. Won (2016) Synthesis and characterization of an ELP-conjugated liposome with thermo-sensitivity for controlled release of a drug. Biotechnol. Bioprocess Eng. 21: 620–626.CrossRefGoogle Scholar
  39. 39.
    Akhani, R. C., A. T. Patel, M. J. Patel, S. R. Dedania, J. S. Patel, and D. H. Patel (2018) Column chromatography free purification of recombinant a-amylase from bacillus licheniformis by tagging with hydrophobic elastin like polypeptide. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 88: 1249–1255.CrossRefGoogle Scholar
  40. 40.
    Christensen, T., K. Trabbic-Carlson, W. Liu, and A. Chilkoti (2007) Purification of recombinant proteins from E. coli at low expression levels by inverse transition cycling. Anal. Biochem. 360: 166–168.Google Scholar
  41. 41.
    Hou, A., Z. Deng, H. Ma, and T. Liu (2016) Substrate screening of amino transaminase for the synthesis of a sitagliptin intermediate. Tetrahedron 72: 4660–4664.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hyunwoo Jeon
    • 1
  • Sharad Sarak
    • 1
  • Sang-Hyuk Lee
    • 2
  • Han-Seop Bea
    • 1
  • Mahesh Patil
    • 1
  • Geon-Hee Kim
    • 1
  • Byung-Gee Kim
    • 2
  • Jong In Won
    • 3
  • Hyungdon Yun
    • 1
  1. 1.Department of Systems BiotechnologyKonkuk UniversitySeoulKorea
  2. 2.School of Chemical and Biological EngineeringSeoul National UniversitySeoulKorea
  3. 3.Department of Chemical EngineeringHongik UniversitySeoulKorea

Personalised recommendations