Biotechnology and Bioprocess Engineering

, Volume 23, Issue 5, pp 541–549 | Cite as

Isotherm, Kinetic, and Thermodynamic Characteristics for Adsorption of 2,5-Xylenol onto Activated Carbon

  • Seo-Hui Park
  • Jin-Hyun KimEmail author
Research Paper


The adsorption of the major tar compound, 2,5-xylenol, derived from the plant cell cultures of Taxus chinensis, onto activated carbon was examined at different initial 2,5-xylenol concentrations, durations, and temperatures. From the analysis of adsorption isotherms, the Langmuir isotherm model showed good fit to the equilibrium adsorption data. It was found that adsorption capacity decreased with increasing temperature, and the adsorption of 2,5-xylenol onto activated carbon was favorable. The obtained kinetic data for 2,5-xylenol adsorption with activated carbon agreed well with the pseudo-second-order kinetic model. By using intraparticle diffusion model, intraparticle diffusion and boundary layer diffusion did not play a dominant role in 2,5-xylenol adsorption. Thermodynamic parameters were calculated, which indicated that the adsorption was non-spontaneous, irreversible and exothermic nature. The isosteric heat of adsorption decreased with increase in surface loading, indicating a heterogeneous surface.


2,5-xylenol activated carbon adsorption isotherm kinetics thermodynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rowinsky, E. K., L. A. Cazenave, and R. C. Donehower (1990) Taxol: a novel investigational antimicrotubule agent. J. Natl. Cancer Inst. 82: 1247–1259.CrossRefGoogle Scholar
  2. 2.
    Schiff, P. B., J. Fant, and S. B. Horwitz (1979) Promotion of microtubule assembly in vitro by taxol. Nature 277: 655–667.CrossRefGoogle Scholar
  3. 3.
    Kim, G. J. and J. H. Kim (2015) A simultaneous microwaveassisted extraction and adsorbent treatment process under acidic conditions for recovery and separation of paclitaxel from plant cell. Korean J. Chem. Eng. 32: 1023–1028.CrossRefGoogle Scholar
  4. 4.
    Kim, J. H. (2006) Paclitaxel: recovery and purification in commercialization step. Korean J. Biotechnol. Bioeng. 21: 1–10.Google Scholar
  5. 5.
    Hsiao, J. R., S. F. Leu, and B. M. Huang (2009) Apoptotic mechanism of paclitaxel-induced cell death in human head and neck tumor cell lines. J. Oral Pathol. Med. 38: 188–197.CrossRefGoogle Scholar
  6. 6.
    Rao, K. V., B. Hanuman, C. Alvarez, M. Stoy, J. Juchum, R. M. Davies, and R. Baxley (1995) A new large-scale process for taxol and related taxanes from Taxus brevifolia. Pharm. Res. 12: 1003–1010.CrossRefGoogle Scholar
  7. 7.
    Baloglu, E. and D. G. I. Kingston (1999) A new semisynthesis of paclitaxel from baccatin III. J. Nat. Prod. 62: 1068–1071.CrossRefGoogle Scholar
  8. 8.
    Choi, H. K., T. L. Adams, R. W. Stahlhut, S. I. Kim, J. H. Yun, B. K. Song, J. H. Kim, S. S. Hong, and H. S. Lee (1999) Method for mass production of taxol by semi-continuous culture with Taxus chinensis cell culture. US Patent 5,871,979.Google Scholar
  9. 9.
    Georgiev, M. I., J. Weber, and A. Maciuk (2009) Bioprocessing of plant cell cultures for mass production of targeted compounds. Appl. Microbiol. Biotechnol. 83: 809–823.CrossRefGoogle Scholar
  10. 10.
    Kim, J. H., H. K. Choi, S. S. Hong, and H. S. Lee (2001) Development of high performance chromatography for paclitaxel purification from plant cell cultures. J. Microbiol. Biotechnol. 11: 204–210.Google Scholar
  11. 11.
    Lee, J. Y. and J. H. Kim (2011) Development and optimization of a novel simultaneous microwave-assisted extraction and adsorbent treatment process for separation and recovery of paclitaxel from plant cell cultures. Sep. Purif. Technol. 80: 240–245.CrossRefGoogle Scholar
  12. 12.
    Oh, H. J., H. R. Jang, K. Y. Jung, and J. H. Kim (2012) Evaluation of adsorbents for separation and purification of paclitaxel from plant cell cultures. Process Biochem. 47: 331–334.CrossRefGoogle Scholar
  13. 13.
    Kim, G. J., G. Y. Park, and J. H. Kim (2013) Identification and quantification of tar compounds in plant cell cultures of Taxus chinensis. Korean J. Microbiol. Biotechnol. 41: 272–277.CrossRefGoogle Scholar
  14. 14.
    Park, G. Y., G. J. Kim, and J. H. Kim (2015) Effect of tar compounds on the purification efficiency of paclitaxel from Taxus chinensis. J. Ind. Eng. Chem. 21: 151–154.CrossRefGoogle Scholar
  15. 15.
    Pyo, S. H., H. B. Park, B. K. Song, B. H. Han, and J. H. Kim (2004) A large-scale purification of paclitaxel from cell cultures of Taxus chinensis. Process Biochem. 39: 1985–1991.CrossRefGoogle Scholar
  16. 16.
    Pyo, S. H., B. K. Song, C. H. Ju, B. H. Han, and H. J. Choi (2005) Effects of absorbent treatment on the purification of paclitaxel from cell cultures of Taxus chinensis and yew tree. Process Biochem. 40: 1113–1117.CrossRefGoogle Scholar
  17. 17.
    Han, M. G., K. Y. Jeon, S. Mun, and J. H. Kim (2010) Development of a micelle-fractional precipitation hybrid process for the pre-purification of paclitaxel from plant cell cultures. Process Biochem. 45: 1368–1374.CrossRefGoogle Scholar
  18. 18.
    Liu, Q. -S., T. Zheng, P. Wang, J.-P. Jiang, and N. Li (2010) Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers. Chem. Eng. J. 157: 348–356.CrossRefGoogle Scholar
  19. 19.
    Kang, K. C., S. H. Kwon, S. S. Kim, J. W. Choi, and K. S. Chun (2006) Adsorption of heavy metal ions onto a surface treated with granular activated carbon and activated carbon fibers. J. Anal. Sci. Technol. 19: 285–289.Google Scholar
  20. 20.
    Lee, D. C. and J. J. Lee (2016) Equilibrium, kinetic and thermodynamic parameter studies on adsorption of acid black 1 using coconut shell-based granular activated carbon. Korean Chem. Eng. Res. 27: 590–598.Google Scholar
  21. 21.
    Kam, S. K., S. S. Hyun, and M. G. Lee (2011) Removal of divalent heavy metal ions by Na-P1 synthesized from jeju scoria. J. Environ. Sci. Int. 20: 1337–1345.CrossRefGoogle Scholar
  22. 22.
    Dabrowski, A. (2001) Adsorption-from theory to practice. Adv. Colloid Interface Sci. 93: 135–224.CrossRefGoogle Scholar
  23. 23.
    Weber, T. W. and R. K. Chakravorti (1974) Pore and solid diffusion models for fixed-bed adsorbers. AIChE J. 20: 228–238.CrossRefGoogle Scholar
  24. 24.
    Haghseresht, F. and G. Lu (1998) Adsorption characteristics of phenolic compounds onto coal-reject-derived adsorbents. Energ. Fuel. 12: 1100–1107.CrossRefGoogle Scholar
  25. 25.
    Hosseini, M., S. F. L. Mertens, M. Ghorbani, and M. R. Arshadi (2003) Asymmetrical schiff bases as inhibitors of mild steel corrosion in sulphuric acid media. Mater. Chem. Phys. 78: 800–808.CrossRefGoogle Scholar
  26. 26.
    Gunay, A., E. Arslankaya, and I. Tosun (2007) Lead removal from aqueous solution by natural and pretreated clinoptilolite: adsorption equilibrium and kinetics. J. Hazard. Mater. 146: 362–371.CrossRefGoogle Scholar
  27. 27.
    Bucic-Kojic, A., M. Planinic, S. Tomas, M. Bilic, and D. Velic (2007) Study of solid-liquid extraction kinetics of total polyphenols from grape seeds. J. Food Eng. 81: 236–242.CrossRefGoogle Scholar
  28. 28.
    Pérez Marín, A. B., M. I. Aguilar, V. F. Meseguer, J. F. Ortuño, J. Sáez, and M. Lloréns (2009) Biosorption of chromium (III) by orange (Citrus cinensis) waste: batch and continuous studies. Chem. Eng. J. 155: 199–206.CrossRefGoogle Scholar
  29. 29.
    Langergren, S. (1898) Zur theorie der sogenannten adsorption gelöster stoffe. Veter. Hand. 24: 1–39.Google Scholar
  30. 30.
    Lee, J. J. (2014) Study on equilibrium, kinetic and thermodynamic for adsorption of coomassi brilliant blue G using activated carbon. Clean Technol. 20: 290–297.CrossRefGoogle Scholar
  31. 31.
    Weber, W.J. and J. C. Morris (1963) Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. 89: 31–59.Google Scholar
  32. 32.
    Wu, F. C., R. L. Tseng, and R. S. Juang (2005) Comparisons of porous and adsorption properties of carbons activated by steam and KOH. J. Colloid Interface Sci. 283: 49–56.CrossRefGoogle Scholar
  33. 33.
    Saha, P. and S. Chowdhury (2011) Insight into adsorption thermodynamics. Thermodynamics, Prof. Mizutani Tadashi (Ed.), ISBN: 978-953-307-544-0, InTech, Available from: Scholar
  34. 34.
    Shin, H. S. and J. H. Kim (2016) Isotherm, kinetic and thermodynamic characteristics of adsorption of paclitaxel onto daion HP-20. Process Biochem. 51: 917–924.CrossRefGoogle Scholar
  35. 35.
    Lim, Y. S. and J. H. Kim (2017) Isotherm, kinetic and thermodynamic studies on the adsorption of 13-dehydroxybaccatin III from Taxus chinensis onto Sylopute. J. Chem. Thermodynamics 115: 261–268.CrossRefGoogle Scholar
  36. 36.
    Bang, S. Y. and J. H. Kim (2017) Isotherm, kinetic, and thermodynamic studies on the adsorption behavior of 10-deacetylpaclitaxel onto Sylopute. Biotechnol. Bioproc. Eng. 22: 620–630.CrossRefGoogle Scholar
  37. 37.
    Sivakumar, P. and P. N. Palanisamy (2009) Adsorption studies of basic red 29 by a non-conventional activated carbon prepared from Euphorbia antiquorum L. Int. J. Chem. Tech. Res. 1: 502–510.Google Scholar
  38. 38.
    Dogan, M., M. Alkan, Ö. Demirbas, Y. Özdemir, and C. Özmetin (2006) Adsorption kinetics of maxilon blue GRL onto sepiolite from aqueous solutions. Chem. Eng. J. 124: 89–101.CrossRefGoogle Scholar
  39. 39.
    Cheung, W. H., Y. S. Szeto, and G. McKay (2007) Intraparticle diffusion processes during acid dye adsorption onto chitosan. Bioresour. Technol. 98: 2897–2904.CrossRefGoogle Scholar
  40. 40.
    Tan, I. A. W., A. L. Ahmad, and B. H. Hameed (2008) Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: equilibrium, kinetic and thermodynamic studies. J. Hazard. Mater. 154: 337–346.CrossRefGoogle Scholar
  41. 41.
    Na, C. K. and H. J. Park (2011) Applicability of theoretical adsorption models for studies on adsorption properties of adsorbents (II). J. Korean Soc. Environ. Eng. 33: 804–811.CrossRefGoogle Scholar
  42. 42.
    Kweon, S. H., W. S. Kang, I. S. Kim, P. W. Park, Y. S. Yoon, and Y. O. Jeong (1998) Removal of phenols by granular activated carbon in aqueous solution. J. Environ. Sci. Int. 7: 541–548.Google Scholar
  43. 43.
    Hamdi Karaoglu, M., S. Zor, and M. Ugurlu (2010) Biosorption of Cr (III) from solutions using vineyard pruning waste. Chem. Eng. J. 159: 98–106.CrossRefGoogle Scholar
  44. 44.
    Boparai, H.K., M. Joseph, and D. M. O’Carroll (2011) Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J. Hazard. Mater. 186: 458–465.CrossRefGoogle Scholar
  45. 45.
    Zulfikar, M.A. (2013) Effect of temperature on adsorption of humic acid from peat water onto pyrophyllite. Int. J. Chem. Environ. Biol. Sci. 1: 2320–4087.Google Scholar
  46. 46.
    Dogan, M., H. Abak, and M. Alkan (2009) Adsorption of methylene blue onto hazelnut shell: kinetics, mechanism and activation parameters. J. Hazard. Mater. 164: 172–181.CrossRefGoogle Scholar
  47. 47.
    Chowdhury, S., R. Mishra, P. Saha, and P. Kushwaha (2011) Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk. Desalination 265: 159–168.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringKongju National UniversityCheonanKorea

Personalised recommendations