Advertisement

Enhanced Emulsifying and Calcium-binding Properties of Fermented Soybean Meal

  • Sangkwon ParkEmail author
  • Kyung Hoon Chang
  • Seong Jun Cho
Research Paper

Abstract

A processed soybean meal (BF-SBM) was prepared by fermenting soybean meal with the genus Bacillus sp. strain for comparison with commercially prepared Lactobacillus-fermented soybean meal (LF-SBM), an enzyme treated soybean meal (ET-SBM) and a soy protein concentrate (SPC). Emulsifying activity and stability of the emulsions prepared from these products were investigated using typical methods in the literature with modifications and Turbiscan measurements, respectively. Calcium ion chelating ability of the SBM products was determined using a modified literature method. The resulting protein profiles, emulsifying properties and calcium-binding behaviors of the soybean products were compared. The results are discussed in terms of the influence of peptide molecular weight and the concentration of specific amino acids on emulsifying and calcium-binding properties of soybean proteins.

Keywords

soybean meal fermentation emulsifying properties calcium-binding properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhang, Y., R. Yang, W. Zhao, X. Hua, and W. Zhang (2013) Application of high density steam flash–explosion in protein extraction of soybean meal. J. Food Eng. 116: 430–435.CrossRefGoogle Scholar
  2. 2.
    Fischer, M., L. V. Kofod, H. A. Schols, S. R. Piersma, H. Gruppen, and A. G. Voragen (2001) Enzymatic extractability of soybean meal proteins and carbohydrates: heat and humidity effects. J. Agr. Food Chem. 49: 4463–4469.CrossRefGoogle Scholar
  3. 3.
    Granito, M., A. Torres, J. Frias, M. Guerra, and C. Vidal–Valverde (2005) Influence of fermentation on the nutritional value of two varieties of Vigna sinensis. Eur. Food Res. Technol. 220: 176–181.CrossRefGoogle Scholar
  4. 4.
    Inoue, N., K. Nagao, K. Sakata, N. Yamano, P. E. R. Gunawardena, S. Y. Han, T. Matsui, T. Nakamori, H. Furuta, K. Takamats, and T. Yanagita (2011) Screening of soy protein–derived hypotriglyceridemic di–peptides in vitro and in vivo. Lipids Health Dis. 10: 85.CrossRefGoogle Scholar
  5. 5.
    Rooke, J. A., M. Slessor, H. Fraser, and J. R. Thomson (1998) Growth performance and gut function of piglets weaned at four weeks of age and fed protease–treated soya–bean meal. Anim. Feed Sci. Tech. 70: 175–190.CrossRefGoogle Scholar
  6. 6.
    Yin, Y. L., S. K. Baidoo, H. Schulze, and P. H. Simmins (2001) Effects of supplementing diets containing hulless barley varieties having different levels of non–starch polysaccharides with ß–glucanase and xylanase on the physiological status of the gastrointestinal tract and nutrient digestibility of weaned pigs. Livest. Prod. Sci. 71: 97–107.CrossRefGoogle Scholar
  7. 7.
    Wang, T., G. Qin, Z. Sun, Y. Zhao, and B. Zhang (2010) Comparative study on the residual rate of immunoreactive soybean glycinin (11S) in the digestive tract of pigs of different ages. Food Agr. Immunol. 21: 201–208.CrossRefGoogle Scholar
  8. 8.
    Hong, K. J., C. H. Lee, and S. W. Kim (2004) Aspergillus oryzae GB–107 fermentation improves nutritional quality of food soybeans and feed soybean meals. J. Med. Foo. 7: 430–435.CrossRefGoogle Scholar
  9. 9.
    Cho, J. H., B. J. Min, Y. J. Chen, J. S. Yoo, Q. Wang, J. D. Kim, and I. H. Kim (2007) Evaluation of FSP (fermented soy protein) to replace soybean meal in weaned pigs: growth performance, blood urea nitrogen and total protein concentrations in serum and nutrient digestibility. Asian–Australas. J. Anim. Sci. 20: 1874.Google Scholar
  10. 10.
    Cervantes–Pahm, S. K. and H. H. Stein (2010) Ileal digestibility of amino acids in conventional, fermented, and enzyme–treated soybean meal and in soy protein isolate, fish meal, and casein fed to weanling pigs. J. Anim. Sci. 88: 2674–2683.CrossRefGoogle Scholar
  11. 11.
    Feng, J., X. Liu, Z. R. Xu, Y. P. Lu, and Y. Y. Liu (2007) The effect of Aspergillus oryzae fermented soybean meal on growth performance, digestibility of dietary components and activities of intestinal enzymes in weaned piglets. Anim. Feed Sci. Tech. 134: 295–303.CrossRefGoogle Scholar
  12. 12.
    Frias, J., Y. S. Song, C. Martínez–Villaluenga, E. G. De Mejia, and C. Vidal–Valverde (2007) Immunoreactivity and amino acid content of fermented soybean products. J. Agr. Food Chem. 56: 99–105.CrossRefGoogle Scholar
  13. 13.
    Hu, Y., C. Ge, W. Yuan, R. Zhu, W. Zhang, L. Du, and J. Xue (2010) Characterization of fermented black soybean natto inoculated with Bacillus natto during fermentation. J. Sci. Food Agr. 90: 1194–1202.CrossRefGoogle Scholar
  14. 14.
    Pyo, Y. H., T. C. Lee, and Y. C. Lee (2005) Effect of lactic acid fermentation on enrichment of antioxidant properties and bioactive isoflavones in soybean. J. Food Sci. 70: S215–S220.CrossRefGoogle Scholar
  15. 15.
    Refstie, S., S. Sahlström, E. Bråthen, G. Baeverfjord, and P. Krogedal (2005) Lactic acid fermentation eliminates indigestible carbohydrates and antinutritional factors in soybean meal for Atlantic salmon (Salmo salar). Aquacultur. 246: 331–345.CrossRefGoogle Scholar
  16. 16.
    Amadou, I., G. W. Le, Y. H., Shi, O. S. Gbadamosi, M. T. Kamara, and S. Jin (2011) Optimized Lactobacillus plantarum LP6 solidstate fermentation and proteolytic hydrolysis improve some nutritional attributes of soybean protein meal. J. Food Biochem. 35: 1686–1694.CrossRefGoogle Scholar
  17. 17.
    Soyfoods, Soy protein isolate (2013) http://www.soyfoods.org/ soy–information/soy–fact–sheets/soy–protein–isolate–fact–sheet/.Google Scholar
  18. 18.
    Khuwijitjaru, P., S. Anantanasuwong, and S. Adachi (2011) Emulsifying and foaming properties of defatted soy meal extracts obtained by subcritical water treatment. Int. J. Food Prop. 14: 9–16.CrossRefGoogle Scholar
  19. 19.
    Charoensapyanan, R., K. Ito, P. Rudeekulthamrong, and J. Kaulpiboon (2016) Enzymatic synthesis of propyl–a–glycosides and their application as emulsifying and antibacterial agents. Biotechnol. Bioprocess Eng. 21: 389–401.CrossRefGoogle Scholar
  20. 20.
    Velioglu, Z. and R. O. Urek (2016) Physicochemical and structural characterization of biosurfactant produced by Pleurotus djamor in solid–state fermentation. Biotechnol. Bioprocess Eng. 21: 430–438.CrossRefGoogle Scholar
  21. 21.
    Kim, S. B. and J. W. Lim (2004) Calcium–binding peptides derived from tryptic hydrolysates of cheese whey protein. Asian–Australas. J. Anim. Sci. 17: 1459–1464.Google Scholar
  22. 22.
    Lee, S. H. and K. B. Song (2009) Isolation of a calcium–binding peptide from enzymatic hydrolysates of porcine blood plasma protein. J. Korean Soc. Appl. Biol. Chem. 52: 290–294.CrossRefGoogle Scholar
  23. 23.
    Bronner, F. and D. Pansu (1998) Nutrition aspects of calcium absorption. J. Nutr. 129: 9–12.CrossRefGoogle Scholar
  24. 24.
    Arjmandi, B. H., D. A. Khalil, and B. W. Hollis (2002) Soy protein: its effect on intestinal calcium transport, serum vitamin D, and insulin–like growth factor–I in ovariectomized rats. Calcified Tissue Int. 70: 483–487.CrossRefGoogle Scholar
  25. 25.
    Narin, C., C. Benjamas, S. Nualpun, and Y. Wirote (2013) Calciumbinding peptides derived from tilapia (Oreochromis niloticus) protein hydrolysate. Eur. Food Res. Technol. 236: 57–63.CrossRefGoogle Scholar
  26. 26.
    Fling, S. P. and D. S. Gregerson (1986) Peptide and protein molecular weight determination by electrophoresis using a highmolarity Tris–buffer system without urea. Anal. Biochem. 55: 83–88.CrossRefGoogle Scholar
  27. 27.
    Sapan, C. V., R. L. Lundblad, and N. C. Price (1999) Colorimetric protein assay techniques. Biotechnol. Appl. Biochem. 29: 99–108.Google Scholar
  28. 28.
    Neto, V. Q., N. Narain, J. B. Silva, and P. S. Bora (2001) Functional properties of raw and heat processed cashew nut (Anacardium occidentale, l.) kernel protein isolates. Nahrung–Foo. 45: 258–262.CrossRefGoogle Scholar
  29. 29.
    Zhao, L., S. Huang, X. Cai, J. Hong, and S. Wang (2014) A specific peptide with calcium chelating capacity isolated from whey protein hydrolysate. J. Funct. Food. 10: 46–53.CrossRefGoogle Scholar
  30. 30.
    Gitelman, H. J. (1967) An improved automated procedure for the determination of calcium in biological specimens. Anal. Biochem. 18: 521–531.CrossRefGoogle Scholar
  31. 31.
    Wu, W. U., N. S. Hettiarachchy, and M. Qi (1998) Hydrophobicity, solubility, and emulsifying properties of soy protein peptides prepared by papain modification and ultrafiltration. J. Am. Oil Chem. Soc. 75: 845–850.CrossRefGoogle Scholar
  32. 32.
    Barac, M. B., S. T. Jovanovic, S. P. Stanojevic, and M. B. Pesic (2006) Effect of limited hydrolysis on traditional soy protein concentrate. Sensor. 6: 1087–1101.CrossRefGoogle Scholar
  33. 33.
    Zhang, Y., R. Yang, W. Zhao, X. Hua, and W. Zhang (2014) Physicochemical and emulsifying properties of protein extracted from soybean meal assisted by steam flash–explosion. Innov. Food Sci. Emerg. 23: 131–137.CrossRefGoogle Scholar
  34. 34.
    Kiers, J. L., R. M. J. Nout, and F. M. Rombouts (2000) In vitro digestibility of processed and fermented soya bean, cowpea and maize. J. Sci. Food Agr. 80: 1325–1331.CrossRefGoogle Scholar
  35. 35.
    Sarkar, P. K., L. J. Jones, G. S. Craven, S. M. Somerset, and C. Palmer (1997) Amino acid profiles of kinema, a soybeanfermented food. Food Chem. 59: 69–75.CrossRefGoogle Scholar
  36. 36.
    Wongputtisin, P., C. Khanongnuch, W. Kongbuntad, P. Niamsup, S. Lumyong, and P. K. Sarkar (2014) Use of Bacillus subtilis isolates from Tua–nao towards nutritional improvement of soya bean hull for monogastric feed application. Lett. Appl. Microbiol. 59: 328–333.CrossRefGoogle Scholar
  37. 37.
    Ying, W., R. Zhu, W. Lu, and L. Gong (2009) A new strategy to apply Bacillus subtilis MA139 for the production of solid–state fermentation feed. Lett. Appl. Microbiol. 49: 229–234.CrossRefGoogle Scholar
  38. 38.
    Shimizu, M., M. Saito, and K. Yamauchi (1986) Hydrophobicity and emulsifying activity of milk proteins, Agric. Biol. Chem. 50: 791–792.Google Scholar
  39. 39.
    Gan, L., M. Zhou, D. Yang, and X. Qiu (2013) Preparation and evaluation of carboxymethylated lignin as dispersant for aqueous graphite suspension using Turbiscan Lab analyzer. J. Disper. Sci. Technol. 34: 644–650.CrossRefGoogle Scholar
  40. 40.
    Chanamai, R. and D. J. McClements (2000) Impact of weighting agents and sucrose on gravitational separation of beverage emulsions. J. Agric. Food Chem. 48: 5561–5565.CrossRefGoogle Scholar
  41. 41.
    Tadros, T. (2004) Application of rheology for assessment and prediction of the long–term physical stability of emulsions. Adv. Colloids Interfac. 108: 227–258.CrossRefGoogle Scholar
  42. 42.
    Mohan, S. and G. Narsimhan (1997) Coalescence of proteinstabilized emulsions in a high–pressure homogenizer. J. Colloid Interface Sci. 192: 1–15.CrossRefGoogle Scholar
  43. 43.
    Bao, X. L., M. Song, J. Zhang, Y. Chen, and S. T. Guo (2007) Calcium binding ability of soy protein hydrolysates. Chinese Chem. Lett. 18: 1115–1118.CrossRefGoogle Scholar
  44. 44.
    Kroll, R. D. (1984) Effect of pH on the binding of calcium ions by soybean proteins. Cereal Chem. 61: 490–495.Google Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Sangkwon Park
    • 1
    Email author
  • Kyung Hoon Chang
    • 2
  • Seong Jun Cho
    • 3
  1. 1.Department of Chemical and Biochemical EngineeringDongguk UniversitySeoulKorea
  2. 2.CJ Cheiljedang Blossom ParkSuwonKorea
  3. 3.Department of Food Science and BiotechnologyKangwon National UniversityChuncheonKorea

Personalised recommendations