Biotechnology and Bioprocess Engineering

, Volume 23, Issue 6, pp 649–654 | Cite as

Growth Inhibitory Effect of Mangiferin on Thyroid Cancer Cell Line TPC1

  • Lei Zhang
  • Mingchun WangEmail author
Research Paper


Thyroid cancer is the most frequently occurring cancer in human. Therefore, there is a need for better understanding and improvement in the treatment for thyroid tumorigenesis. Many studies show that natural dietary components like Mangiferin (present in mangoes) have anti-carcinogenic ability and reduce the incidence and development of cancers. The present study was focused on analysing the effect of Mangiferin on human thyroid cancer cell line (TPC1) and to assess its therapeutic significance against aggressive thyroid cancers. The cell viability of TPC1 cells was evaluated by MTT assay. The DAPI and AO/Er staining using fluorescence microscopy was used to evaluate the effects of the compound on apoptosis. The PCNA expression was also examined. In the present study, Mangiferin has significantly inhibits TPC1 cell proliferation. DAPI nuclear staining revealed apoptotic changes occurred in nuclei of cells treated with mangiferin (4 μM). AO/EtBr staining of TCP-1 cells showed that mangiferin treatment (2 and 4 μM) induced cell death. Mangiferin induces apoptosis through the induction of cas-3 and reduced Bcl-2 expression. It was concluded that mangiferin triggered the apoptotic pathways. It also decreased the viability of TPC-1 cells by suppressing the PCNA.


Mangiferin TPC1 cells MTT apoptosis PCNA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yapa, S., O. Mulla, V. Green, J. England, and J. Greenman (2017) The role of chemokines in thyroid carcinoma. Thyroid 27: 1347–1359.CrossRefGoogle Scholar
  2. 2.
    Jemal, A., F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman (2011) Global cancer statistics. CA Cancer J. Clin. 61: 69–90.CrossRefGoogle Scholar
  3. 3.
    Haugen, B. R., E. K. Alexander, K. C. Bible, G. M. Doherty, S. J. Mandel, Y. E. Nikiforov, F. Pacini, G. W. Randolph, A. M. Sawka, M. Schlumberger, K. G. Schuff, S. I. Sherman, J. A. Sosa, D. L. Steward, R. M. Tuttle, and L. Wartofsky (2016) 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the american thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 26: 1–133.CrossRefGoogle Scholar
  4. 4.
    Hanahan, D. and R. A. Weinberg (2000) The hallmarks of cancer. Cell 100: 57–70.CrossRefGoogle Scholar
  5. 5.
    Bratton, S. B., M. MacFarlane, K. Cain, and G. M. Cohen (2000) Protein complexes activate distinct caspase cascades in death receptor and stress–induced apoptosis. Exp. Cell. Res. 256: 27–33.CrossRefGoogle Scholar
  6. 6.
    Shi, Y. (2002) Mechanisms of caspase activation and inhibition during apoptosis. Mol. Cell. 9: 459–470.CrossRefGoogle Scholar
  7. 7.
    Gupta, S. (2003) Molecular signaling in death receptor and mitochondrial pathways of apoptosis (Review). Int. J. Oncol. 22: 15–20.Google Scholar
  8. 8.
    Schultz, D. R. and W. J. Harrington (2003) Apoptosis: programmed cell death at a molecular level. Semin. Arthritis. Rheum. 32: 345–369.CrossRefGoogle Scholar
  9. 9.
    Hassan, M., H. Watari, A. AbuAlmaaty, Y. Ohba, and N. Sakuragi (2014) Apoptosis and molecular targeting therapy in cancer. Biomed. Res. Int. 150845.Google Scholar
  10. 10.
    Roy, S. and D. W. Nicholson (2000) Cross–talk in cell death signaling. J. Exp. Med. 192: F21–25.CrossRefGoogle Scholar
  11. 11.
    Sprick, M. R. and H. Walczak (2004) The interplay between the Bcl–2 family and death receptor–mediated apoptosis. Biochim. Biophys. Acta 1644: 125–132.CrossRefGoogle Scholar
  12. 12.
    Slee, E. A., C. Adrain, and S. J. Martin (1999) Serial killers: ordering caspase activation events in apoptosis. Cell. Death. Diffe. 6: 1067–1074.CrossRefGoogle Scholar
  13. 13.
    Mailand, N., I. Gibbs–Seymour, and S. Bekker–Jensen (2013) Regulation of PCNA–protein interactions for genome stability. Nat. Rev. Mol. Cell. Biol. 14: 269–282.CrossRefGoogle Scholar
  14. 14.
    Matkowski, A., P. Kus, E. Goralska, and D. Wozniak (2013) Mangiferin–a bioactive xanthonoid, not only from mango and not just antioxidant. Mini. Rev. Med. Chem. 13: 439–455.Google Scholar
  15. 15.
    Gold–Smith, F., A. Fernandez, and K. Bishop (2016) Mangiferin and cancer: mechanisms of action. Nutrients 8.Google Scholar
  16. 16.
    Rajendran, P., T. Rengarajan, N. Nandakumar, H. Divya, and I. Nishigaki (2015) Mangiferin in cancer chemoprevention and treatment: pharmacokinetics and molecular targets. J. Recept. Signal Transduct Res. 35: 76–84.CrossRefGoogle Scholar
  17. 17.
    Peng, Z.G., J. Luo, L. H. Xia, Y. Chen, and S. J. Song (2004) [CML cell line K562 cell apoptosis induced by mangiferin]. Zhongguo. Shi. Yan. Xue. Ye. Xue. Za. Zhi. 12: 590–594.Google Scholar
  18. 18.
    Yao, Y. B., Z. G. Peng, Z. F. Liu, J. Yang, and J. Luo (2010) [Effects of mangiferin on cell cycle status and CDC2/Cyclin B1 expression of HL–60 cells]. Zhong. Yao. Cai. 33: 81–85.Google Scholar
  19. 19.
    Peng, Z. G., Y. B. Yao, J. Yang, Y. L. Tang, and X. Huang (2015) Mangiferin induces cell cycle arrest at G2/M phase through ATR–Chk1 pathway in HL–60 leukemia cells. Genet. Mol. Res. 14: 4989–5002.CrossRefGoogle Scholar
  20. 20.
    Li, M., H. Ma, L. Yang, and P. Li (2016) Mangiferin inhibition of proliferation and induction of apoptosis in human prostate cancer cells is correlated with downregulation of B–cell lymphoma–2 and upregulation of microRNA–182. Oncol. Lett. 11: 817–822.CrossRefGoogle Scholar
  21. 21.
    Huang, H., C. Nong, L. Guo, G. Meng, and X. L. Zha (2002) The proliferation inhibition effect and apoptosis induction of Mangiferin on BEL–7404 human hepatocellular carcinoma cell. Chin. J. Dig. 6: 341–343.Google Scholar
  22. 22.
    Chattopadhyay, U., S. Das, S. Guha, and S. Ghosal (1987) Activation of lymphocytes of normal and tumor bearing mice by mangiferin, a naturally occurring glucosylxanthone. Cancer Lett. 37: 293–299.CrossRefGoogle Scholar
  23. 23.
    Kasibhatla, S., G. P. Amarante–Mendes, D. Finucane, T. Brunner, E. Bossy–Wetzel, and D. R. Green (2006) Acridine orange/ethidium bromide (AO/EB) staining to detect apoptosis. CSH Protoc. 3.CrossRefGoogle Scholar
  24. 24.
    Pan, L. L., A. Y. Wang, Y. Q. Huang, Y. Luo, and M. Ling (2014) Mangiferin induces apoptosis by regulating Bcl–2 and Bax expression in the CNE2 nasopharyngeal carcinoma cell line. Asian. Pac. J. Cancer Prev. 15: 7065–7068.CrossRefGoogle Scholar
  25. 25.
    Maso, V., A. K. Calgarotto, G. C. Franchi, A. E. Nowill, P. L. Filho, J. Vassallo, and S. T. Saad (2014) Multitarget effects of quercetin in leukemia. Cancer Prev. Res. (Phila) 7: 1240–1250.CrossRefGoogle Scholar
  26. 26.
    Kim, H., J. Y. Moon, K. S. Ahn, and S. K. Cho (2013) Quercetin induces mitochondrial mediated apoptosis and protective autophagy in human glioblastoma U373MG cells. Oxid. Med. Cell. Longev. 2013: 596496.Google Scholar
  27. 27.
    Actis, M., A. Inoue, B. Evison, S. Perry, C. Punchihewa, and N. Fujii (2013) Small molecule inhibitors of PCNA/PIP–box interaction suppress translesion DNA synthesis. Bioorg. Med. Chem. 21: 1972–1977.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Breast Surgery, Shandong Provincial Qianfoshan HospitalShandong UniversityJinan, ShandongChina
  2. 2.Department of General SurgicalJinan Hospital of Traditional Chinese MedicineJinan, ShandongChina
  3. 3.Department of General SurgeryThe Second People’s Hospital of Yunnan ProvinceKunming, YunnanChina

Personalised recommendations