Advertisement

Biotechnology and Bioprocess Engineering

, Volume 23, Issue 5, pp 573–579 | Cite as

Enhancement of Pyruvate Productivity in Candida glabrata by Deleting the CgADE13 Gene to Improve Acid Tolerance

  • Xiulai Chen
  • Qiuling Luo
  • Jia Liu
  • Liming Liu
Research Paper
  • 5 Downloads

Abstract

Acid tolerance is one of the critical factors to evaluate the quality of the industrial production strains, especially organic acid producing microorganisms. To circumvent this problem, we investigated the physiological function of adenylosuccinate lyase in AMP metabolism from Candida glabrata by deleting the corresponding gene, CgADE13. At pH 4.0, CgADE13 deletion resulted in a 68.3% and 112.0% increase in biomass and cell viability compared to those of wild type strain (wt), respectively. In addition, CgADE13 deletion also protected cell morphology and counteracted ROS production. Further, the intracellular ATP level of strain Cgade13Δ was decreased by 25.0%, and its H+-ATPase activity was increased by 15.0%. Finally, pyruvate production with strain Cgade13Δ in a 30-L batch bioreactor at pH 4.0 reached 53.9 g/L, and pyruvate productivity was increased by 166.7% compared to that of wt. This is the first report regarding tolerance engineering of C. glabrata for enhancing pyruvate productivity, which provides a good starting point for metabolic engineering to achieve the industrial production of other chemicals.

Keywords

adenylosuccinate lyase ATP acid tolerance pyruvate Candida glabrata 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schugerl, K. (2000) Integrated processing of biotechnology products. Biotechnol. Adv. 18: 581–599.CrossRefGoogle Scholar
  2. 2.
    Sanchez, C., A. R. Neves, J. Cavalheiro, M. M. dos Santos, N. Garcia-Quintans, P. Lopez, and H. Santos (2008) Contribution of citrate metabolism to the growth of Lactococcus lactis CRL264 at low pH. Appl. Environ. Microbiol. 74: 1136–1144.CrossRefGoogle Scholar
  3. 3.
    Klein-Marcuschamer, D. and G. Stephanopoulos (2008) Assessing the potential of mutational strategies to elicit new phenotypes in industrial strains. Proc. Natl. Acad. Sci. USA 105: 2319–2324.CrossRefGoogle Scholar
  4. 4.
    Hida, H., T. Yamada, and Y. Yamada (2007) Genome shuffling of Streptomyces sp. U121 for improved production of hydroxycitric acid. Appl. Microbiol. Biotechnol. 73: 1387–1393.CrossRefGoogle Scholar
  5. 5.
    Hua, Q., A. R. Joyce, S. S. Fong, and B. O. Palsson (2006) Metabolic analysis of adaptive evolution for in silico-designed lactate-producing strains. Biotechnol. Bioeng. 95: 992–1002.CrossRefGoogle Scholar
  6. 6.
    Wu, J., X. Chen, L. Cai, L. Tang, and L. Liu (2015) Transcription factors Asg1p and Hal9p regulate pH homeostasis in Candida glabrata. Front. Microbiol. 6: 843.Google Scholar
  7. 7.
    Walther, T., M. Novo, K. Rossger, F. Letisse, M. O. Loret, J. C. Portais, and J. M. Francois (2010) Control of ATP homeostasis during the respiro-fermentative transition in yeast. Mol. Syst. Biol. 6: 344.CrossRefGoogle Scholar
  8. 8.
    Ataullakhanov, F. I. and V. M. Vitvitsky (2002) What determines the intracellular ATP concentration. Biosci. Rep. 22: 501–511.CrossRefGoogle Scholar
  9. 9.
    Saint-Marc, C., B. Pinson, F. Coulpier, L. Jourdren, O. Lisova, and B. Daignan-Fornier (2009) Phenotypic consequences of purine nucleotide imbalance in Saccharomyces cerevisiae. Genetics 183: 529–538, 521SI-527SI.CrossRefGoogle Scholar
  10. 10.
    Loret, M. O., L. Pedersen, and J. Francois (2007) Revised procedures for yeast metabolites extraction: application to a glucose pulse to carbon-limited yeast cultures, which reveals a transient activation of the purine salvage pathway. Yeast 24: 47–60.CrossRefGoogle Scholar
  11. 11.
    Morrison, B. A. and D. H. Shain (2008) An AMP nucleosidase gene knockout in Escherichia coli elevates intracellular ATP levels and increases cold tolerance. Biol. Lett. 4: 53–56.CrossRefGoogle Scholar
  12. 12.
    Parry, B. R. and D. H. Shain (2011) Manipulations of AMP metabolic genes increase growth rate and cold tolerance in Escherichia coli: implications for psychrophilic evolution. Mol. Biol. Evol. 28: 2139–2145.CrossRefGoogle Scholar
  13. 13.
    Liu, L. M., Y. Li, H. Z. Li, and J. Chen (2004) Manipulating the pyruvate dehydrogenase bypass of a multi-vitamin auxotrophic yeast Torulopsis glabrata enhanced pyruvate production. Lett. Appl. Microbiol. 39: 199–206.CrossRefGoogle Scholar
  14. 14.
    Zhou, J., Z. Dong, L. Liu, G. Du, and J. Chen (2009) A reusable method for construction of non-marker large fragment deletion yeast auxotroph strains: A practice in Torulopsis glabrata. J. Microbiol. Methods 76: 70–74.CrossRefGoogle Scholar
  15. 15.
    Yan, D., X. Lin, Y. Qi, H. Liu, X. Chen, L. Liu, and J. Chen (2016) Crz1p regulates pH homeostasis in Candida glabrata by altering membrane lipid composition. Appl. Environ. Microbiol. 82: 6920–6929.CrossRefGoogle Scholar
  16. 16.
    Andreishcheva, E. N., E. P. Isakova, N. N. Sidorov, N. B. Abramova, N. A. Ushakova, G. L. Shaposhnikov, M. I. Soares, and R. A. Zvyagilskaya (1999) Adaptation to salt stress in a salttolerant strain of the yeast Yarrowia lipolytica. Biochemistry (Mosc) 64: 1061–1067.Google Scholar
  17. 17.
    Bairwa, G. and R. Kaur (2011) A novel role for a glycosylphosphatidylinositol-anchored aspartyl protease, CgYps1, in the regulation of pH homeostasis in Candida glabrata. Mol. Microbiol. 79: 900–913.CrossRefGoogle Scholar
  18. 18.
    Kimoto, H., H. Matsuyama, I. Yumoto, and K. Yoshimune (2008) Heme content of recombinant catalase from Psychrobacter sp. T-3 altered by host Escherichia coli cell growth conditions. Protein Expr. Purif. 59: 357–359.CrossRefGoogle Scholar
  19. 19.
    Yang, S., X. Chen, N. Xu, L. Liu, and J. Chen (2014) Urea enhances cell growth and pyruvate production in Torulopsis glabrata. Biotechnol. Prog. 30: 19–27.CrossRefGoogle Scholar
  20. 20.
    Canelas, A. B., A. ten Pierick, C. Ras, R. M. Seifar, J. C. van Dam, W. M. van Gulik, and J. J. Heijnen (2009) Quantitative evaluation of intracellular metabolite extraction techniques for yeast metabolomics. Anal. Chem. 81: 7379–7389.CrossRefGoogle Scholar
  21. 21.
    Nakamura, K., M. Niimi, K. Niimi, A. R. Holmes, J. E. Yates, A. Decottignies, B. C. Monk, A. Goffeau, and R. D. Cannon (2001) Functional expression of Candida albicans drug efflux pump Cdr1p in a Saccharomyces cerevisiae strain deficient in membrane transporters. Antimicrob. Agents Chemother. 45: 3366–3374.CrossRefGoogle Scholar
  22. 22.
    Viegas, C. A., P. B. Sebastiao, A. G. Nunes, and I. Sa-Correia (1995) Activation of plasma membrane H(+)-ATPase and expression of PMA1 and PMA2 genes in Saccharomyces cerevisiae cells grown at supraoptimal temperatures. Appl. Environ. Microbiol. 61: 1904–1909.Google Scholar
  23. 23.
    Xu, G., L. Liu, and J. Chen (2012) Reconstruction of cytosolic fumaric acid biosynthetic pathways in Saccharomyces cerevisiae. Microb. Cell Fact. 11: 24.CrossRefGoogle Scholar
  24. 24.
    Saint-Marc, C., B. Pinson, F. Coulpier, L. Jourdren, O. Lisova, and B. Daignan-Fornier (2009) Phenotypic consequences of purine nucleotide imbalance in Saccharomyces cerevisiae. Genetics 183: 529–538, 521SI-527SI.CrossRefGoogle Scholar
  25. 25.
    Zhou, J., L. Liu, Z. Shi, G. Du, and J. Chen (2009) ATP in current biotechnology: regulation, applications and perspectives. Biotechnol. Adv. 27: 94–101.CrossRefGoogle Scholar
  26. 26.
    Liu, L., Y. Li, G. Du, and J. Chen (2006) Redirection of the NADH oxidation pathway in Torulopsis glabrata leads to an enhanced pyruvate production. Appl. Microbiol. Biotechnol. 72: 377–385.CrossRefGoogle Scholar
  27. 27.
    Zhou, J., L. Liu, and J. Chen (2010) Improved ATP supply enhances acid tolerance of Candida glabrata during pyruvic acid production. J. Appl. Microbiol. 110: 44–53.CrossRefGoogle Scholar
  28. 28.
    Somsen, O. J. G., M. A. Hoeben, E. Esgalhado, J. L. Snoep, D. Visser, R. van der Heijden, J. J. Heijnen, and H. V. Westerhoff (2000) Glucose and the ATP paradox in yeast. Biochem. J. 352: 593–599.CrossRefGoogle Scholar
  29. 29.
    Wang, Z., S. Chen, M. Sun, and Z. Yu (2007) A fundamental dual regulatory role of citrate on the biosyntheses of thuringiensin and poly-beta-hydroxybutyrate in Bacillus thuringiensis YBT-032. Biotechnol. Lett. 29: 779–784.CrossRefGoogle Scholar
  30. 30.
    Schmid, A., J. S. Dordick, B. Hauer, A. Kiener, M. Wubbolts, and B. Witholt (2001) Industrial biocatalysis today and tomorrow. Nature 409: 258–268.CrossRefGoogle Scholar
  31. 31.
    Liu, L., Y. Li, H. Li, and J. Chen (2006) Significant increase of glycolytic flux in Torulopsis glabrata by inhibition of oxidative phosphorylation. FEMS Yeast Res. 6: 1117–1129.CrossRefGoogle Scholar
  32. 32.
    Jensen, P. R. and O. Michelsen (1992) Carbon and energy metabolism of atp mutants of Escherichia coli. J. Bacteriol. 174: 7635–764.CrossRefGoogle Scholar
  33. 33.
    Causey, T. B., K. T. Shanmugam, L. P. Yomano, and L. O. Ingram (2004) Engineering Escherichia coli for efficient conversion of glucose to pyruvate. Proc. Natl. Acad. Sci. USA 101: 2235–2240.CrossRefGoogle Scholar
  34. 34.
    van Maris, A. J., J. M. Geertman, A. Vermeulen, M. K. Groothuizen, A. A. Winkler, M. D. Piper, J. P. van Dijken, and J. T. Pronk (2004) Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C2-independent, glucosetolerant, and pyruvate-hyperproducing yeast. Appl. Environ. Microbiol. 70: 159–166..CrossRefGoogle Scholar
  35. 35.
    Liu, L., Q. Xu, Y. Li, Z. Shi, Y. Zhu, G. Du, and J. Chen (2010) Enhancement of pyruvate production by osmotic-tolerant mutant of Torulopsis glabrata. Biotechnol. Bioeng. 97: 825–832.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiulai Chen
    • 1
    • 2
  • Qiuling Luo
    • 1
    • 2
  • Jia Liu
    • 1
    • 2
  • Liming Liu
    • 1
    • 2
    • 3
  1. 1.State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
  2. 2.Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan UniversityWuxiChina
  3. 3.National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan UniversityWuxiChina

Personalised recommendations