Biotechnology and Bioprocess Engineering

, Volume 23, Issue 5, pp 507–524 | Cite as

In Search of Engineered Prokaryotic Chlorophyllases: A Bioinformatics Approach

  • Ebrahim Sharafi
  • Jamshid Farmani
  • Ali Pakdin Parizi
  • Ali Dehestani
Research Paper


Chlorophyllase (Chlase) is considered as the first and most important enzyme in chlorophyll degradation pathway. Although there is abundant information regarding plant Chlases and their biological functions, comparatively little is known about their prokaryotic counterparts. In the present study, we employed several bioinformatics tools to assess the phylogenetic relationships in bacterial and cyanobacterial Chlases as well as predicting their molecular and physicochemical properties. The phylogenetic tree analysis classified the bacterial and cyanobacterial chlorophyllases into three distinct clades. All bacterial and cyanobacterial chlorophyllases possessed at least one alpha/ beta hydrolase family domain (pfam12695). Cyanobacterial chlorophyllases pI analysis indicated that they generally have acidic pH, while the pI of bacterial chlorophyllases ranged from acidic (4.58) to highly basic (10.78). Cyanobacterial chlorophyllases generally contained 1 disulfide bond, while bacterial chlorophyllases averagely contained 3 disulfide bonds. Interestingly, while cyanobacterial chlorophyllases contained one or two N-glycosylation sites, bacterial chlorophyllases contained higher numbers of N-glycosylation sites (6 and 7). The findings of the present study would be useful in paving the road for sophisticated engineering of prokaryotic chlorophyllases for biotechnological applications. It was also exhibited that catalytic triad (serine, glutamate or aspartate and histidine) is a critical factor for chlorophyllase activity.


chlorophyllase bioinformatics physicochemical properties catalytic domains enzyme solubility 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hortensteiner, S. (1999) Review Chlorophyll breakdown in higher plants Cell. Cell. Mol. Life Sci. 56: 330–347.CrossRefGoogle Scholar
  2. 2.
    Hortensteiner, S. and B. Krautler (2011) Chlorophyll breakdown in higher plants. Biochim. Biophys. Acta 1807: 977–988.CrossRefGoogle Scholar
  3. 3.
    Tsuchiya, T., T. Suzuki, T. Yamada, H. Shimada, T. Masuda, H. Ohta, and K. Takamiya (2003) Chlorophyllase as a serine hydrolase: identification of a putative catalytic triad. Plant Cell Physiol. 44: 96–101.CrossRefGoogle Scholar
  4. 4.
    Willstatter, R. and A. Stoll (1913) In studies on Chlorophyll (Springer, Berlin) pp. 172–187.Google Scholar
  5. 5.
    Shioi, Y. and T. Sasa (1986) Purification of solubilized chlorophyllase from Chlorella protorhecoides. Methods Enzymol. 123: 421–427.CrossRefGoogle Scholar
  6. 6.
    Matile, P., S. Hörtensteiner, and H. Thomas (1999) Chlorophyll Degradation. Plant Mol. Biol. 50: 67–95.Google Scholar
  7. 7.
    Takamiya, K., T. Tsuchiya, and H. Ohta (2000) Degradation pathway(s) of chlorophyll: what has gene cloning revealed?. Trends Plant Sci. 5: 426–431.CrossRefGoogle Scholar
  8. 8.
    Schoch, S. and J. Brown (1987) The action of chlorophyllase on chlorophyll-protein complexes. J. Plant Physiol. 126: 483–494.CrossRefGoogle Scholar
  9. 9.
    Chou, Y. L., C. Y. Ko, C. C. Yen, L. C. Chen, and L. F. Shaw (2015) A novel recombinant chlorophyllase1 from Chlamydomonas reinhardtii for the production of chlorophyllide derivatives. J. Agric. Food Chem. 63: 9496–9503.CrossRefGoogle Scholar
  10. 10.
    Terpstra, W. (1981) Identification of chlorophyllase as a glycoprotein. FEBS Lett. 126: 231–235.CrossRefGoogle Scholar
  11. 11.
    Sytykiewicz, H., I. Sprawka, P. Czerniewicz, C. Sempruch, B. Leszczynski, and M. Sikora (2013) Biochemical characterisation of chlorophyllase from leaves of selected Prunus species — A comparative study. Acta Biochim. Pol. 60: 457–465.Google Scholar
  12. 12.
    Lee, G. C., H. Chepyshko, H. H. Chen, C. C. Chu, Y. F. Chou, C. C. Akoh, and J. F. Shaw (2010) Genes and biochemical characterization of three novel chlorophyllase isozymes from Brassica oleracea. J. Agric. Food Chem. 58: 8651–8657.CrossRefGoogle Scholar
  13. 13.
    Arkus, K., E. B. Cahoon, and J. M. Jez (2005) Mechanistic analysis of wheat chlorophyllase. Arch. Biochem. Biophys. 438: 146–155.CrossRefGoogle Scholar
  14. 14.
    Yi, Y., S. Kermasha, L. Hocine, and R. Neufeld (2002) Encapsulation of chlorophyllase in hydrophobically modified hydrogel. J. Mol. Catal. B-Enzym. 20: 319–325.CrossRefGoogle Scholar
  15. 15.
    Zhang, X., Z. Zhang, J. Li, L. Wu, J. Guo, L. Ouyang, Y. Xia, X. Huang, and X. Pang (2011) Correlation of leaf senescence and gene expression/activities of chlorophyll degradation enzymes in harvested Chinese flowering cabbage (Brassica rapa var. parachinensis). J. Plant Physiol. 168: 2081–2087.CrossRefGoogle Scholar
  16. 16.
    Gómez-Lobatoa, M., S. Mansilla, P. Civello, and G. Martínez (2014) Expression of Stay-Green encoding gene (BoSGR) during post-harvest senescence of broccoli. J. Sci. Food Agric. 95: 88–94.Google Scholar
  17. 17.
    Yu, C. S., Y. C. Chen, C. H Lu, and J. K. Hwang (2006) Prediction of protein subcellular localization. Proteins 64: 643–651.CrossRefGoogle Scholar
  18. 18.
    Marchler-Bauer, A., J. B. Anderson, P. F. Cherukuri, and C. DeWeese-Scott, et al (2005) CDD: A conserved domain database for protein classification. Nucleic Acids Res. 33: 192–196.CrossRefGoogle Scholar
  19. 19.
    Thompson, J. D., D. G. Higgins, and T. J Gibson (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673–4680.CrossRefGoogle Scholar
  20. 20.
    Saitou, N. and M. Nei (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.Google Scholar
  21. 21.
    Gasteiger, E., C. Hoogland, A. Gattiker, and S. Duvaud, et al (2005) Protein identification and analysis tools on the ExPASyserver. In: The Proteomics Protocols Handbook, J. M. Walker, (Ed.), Humana Press, New Jersey (USA), pp. 571–607.CrossRefGoogle Scholar
  22. 22.
    Guruprasad, K., B. V. B. Reddy, and M. W. Pandit (1990) Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng. 4: 155–161.CrossRefGoogle Scholar
  23. 23.
    Magnan, C. N., A. Randall, and P. Baldi (2009) SOLpro: accurate sequence-based prediction of protein solubility. Bioinformatics 25: 2200–220710.CrossRefGoogle Scholar
  24. 24.
    Cheng, J., H. Saigo, and P. Baldi (2006) Large-scale prediction of disulphide bridges using kernel methods, two-dimensional recursive neural networks, and weighted graph matchin. Proteins 62: 617–629.CrossRefGoogle Scholar
  25. 25.
    Gupta, R. and S. Brunak (2002) Prediction of glycosylation across the human proteome and the correlation to protein function. Pac. Symp. Biocomput. 7: 310–322.Google Scholar
  26. 26.
    Khalyfa, A., S. Kermasha, A. Khamessan, P. Marsota, and I. Alli (1993) Purification and Characterization of Chlorophyllase from Alga (Phaeodactylum tricornutum) by Preparative Isoelectric Focusing. Biosci. Biotechnol. Biochem. 57: 433–437.CrossRefGoogle Scholar
  27. 27.
    Tsuchiya, T., H. Ohta, K. Okawa, A. Iwamatsu, H. Shimada, T. Masuda, and K. Takamiya, (1999) Cloning of chlorophyllase, the key enzyme in chlorophyll degradation: finding of a lipase motif and the induction by methyl jasmonate. Proc. Natl. Acad. Sci. 96: 15362–15367.CrossRefGoogle Scholar
  28. 28.
    Chen, M., J. Yang, C. Liu, K. Lin, and C. Yang (2014) Molecular, structural, and phylogenetic characterization of two chlorophyllase isoforms in Pachira macrocarpa. Plant Syst. Evol. 300: 633–643.CrossRefGoogle Scholar
  29. 29.
    Chou, Y. L., C. C. Lee, L. F. Yen, L. C. Chen, and L. F. Shaw (2016) A novel recombinant chlorophyllase from Cyanobacterium Cyanothece sp. ATCC 51142 for the production of bacteriochlorophyllide a. Biotechnol. Appl. Biochem. 63: 371–377.CrossRefGoogle Scholar
  30. 30.
    Trebitsh, T., E. E. Goldschmidt, and J. Riov (1993) Ethylene induces de novo synthesis of chlorophyllase, a chlorophyll degrading enzyme, in Citrus fruit peel. Proc. Natl. Acad. Sci. 90: 9441–9445.CrossRefGoogle Scholar
  31. 31.
    Tsuchiya, T., H. Ohta, T. Masuda, B. Mikami, N. Kita, Y. Shioi, and K. Takamiya (1997) Purification and characterization of two isozymes of chlorophyllase from mature leaves of Chenopodium album. Plant Cell Physiol. 38: 1026–1031.CrossRefGoogle Scholar
  32. 32.
    Sharafi, E., A. Dehestani, J. Farmani, and A. Pakdin Parizi (2017) Bioinformatics evaluation of plant chlorophyllase, the key enzyme in chlorophyll degradation. Appl. Food Biotechnol. 4: 167–178.Google Scholar
  33. 33.
    Yakunin, A. F., E. Kuznetsova, M. Proudfoot, S. A. Sanders, J. Reinking, Savchenko, A. C. H. Arrowsmith, and A. M. Edwards (2005) Enzyme genomics: Application of general enzymatic screens to discover new enzymes. FEMS Microbiol. Rev. 29: 263–79.CrossRefGoogle Scholar
  34. 34.
    Bommarius, S. and B. R. Riebel (1974) Biocatalysis Wiley-VCH, Weinheim (Germany).Google Scholar
  35. 35.
    Bertone, P., Y. Kluger, N. Lan, D. Zheng, D. Christendat, A. Yee, A. M. Edwards, C. H. Arrowsmith, G. T. Montelione, and M. Gerstein (2001) SPINE: An integrated tracking database and data mining approach for identifying feasible targets in highthroughput structural proteomics. Nucleic Acids Res. 29: 2884–2898.CrossRefGoogle Scholar
  36. 36.
    Idicula-Thomas, S. and P. V. Balaji (2005) Understanding the relationship between the primary structure of proteins and its propensity to be soluble on overexpression in Escherichia coli. Protein Sci. 14: 582–592.CrossRefGoogle Scholar
  37. 37.
    Luan, C. H., S. Qiu, J. B. Finley, and M. Carson, et al. (2004) Hight- throughput expression of C.elegansproteins. Genome Res. 14: 2102–2110.CrossRefGoogle Scholar
  38. 38.
    Goh, C. S., N. Lan, S. M. Douglas, and B. Wu (2004) Mining the structural genomics pipeline: identification of protein properties that affect high throughput experimental analysis. J. Mol. Biol. 336: 115–130.CrossRefGoogle Scholar
  39. 39.
    Bulleid, N. and L. Ellgaard (2011) Multiple ways to make disulfides. Trends Biochem. Sci. 36: 485–492.CrossRefGoogle Scholar
  40. 40.
    Sola, R. J. and K. Griebenow (2009) Effects of glycosylation on the stability of protein pharmaceuticals. J. Pharm. Sci. 98: 1223–1245.CrossRefGoogle Scholar
  41. 41.
    Easton, R. (2011) Glycosylation of proteins structure, function and analysis. Life Sci.-Tech. Bull. 48: 1–6.Google Scholar
  42. 42.
    Daly, R. and M. T. W. Hearn (2005) Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J. Mol. Recogn. 18: 119–138.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ebrahim Sharafi
    • 1
  • Jamshid Farmani
    • 2
  • Ali Pakdin Parizi
    • 1
  • Ali Dehestani
    • 1
  1. 1.Genetics and Agricultural Biotechnology Institute of TabarestanSari Agricultural Sciences and Natural Resources UniversitySariIran
  2. 2.Department of Food Science and Technology, Faculty of Agricultural EngineeringSari Agricultural Sciences and Natural Resources UniversitySariIran

Personalised recommendations