Advertisement

KIBRA Team Up with Partners to Promote Breast Cancer Metastasis

  • Garima Singh
  • Sarthak Mishra
  • Harish ChanderEmail author
Review
  • 38 Downloads

Abstract

Among women, breast cancer is the most frequently diagnosed cancer. Most of the breast cancers represent metastasis to distant organs at the time of diagnosis and accounts for the majority of deaths. Metastasis is characterized by many genetic aberrations including mutations, overexpression of oncogenes etc. KIBRA (KIdney/BRAin protein), a scaffolding protein is recently described as an important player in the process of invasion and metastasis. The Kidney/BRAin protein through its different domains interacts with various proteins to couple cytoskeleton arrangement, cell polarity and migration. N terminal and C terminal of the protein contains the WW, Internal C2 & putative class III PDZ domain that interacts with DDR1, DLC1 & PKCζ. These protein-protein interactions equip the breast cancer cells to invade and metastasize. Here, we discuss a comprehensive knowledge about the KIBRA protein, its domains and the interacting partners involved in metastasis of breast cancer.

Keywords

Breast Cancer Metastasis Kibra DDR1 DLC1 & PKCζ 

Notes

Acknowledgements

Authors acknowledge DST- SERB, Government of India for extramural funding (EMR/2015/000761) to HC.

Compliance with Ethical Standards

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    Friedenreich CM (2011) Physical activity and breast Cancer: review of the epidemiologic evidence and biologic mechanisms. In: Senn H-J, Otto F (eds) Clinical Cancer prevention. Springer Berlin Heidelberg, Berlin, pp 125–139Google Scholar
  2. 2.
    Zhang X, Liu X, Luo J, Xiao W, Ye X, Chen M, Li Y, Zhang GJ (2016) Notch3 inhibits epithelial–mesenchymal transition by activating Kibra-mediated hippo/YAP signaling in breast cancer epithelial cells. Oncogenesis 5(11):e269.  https://doi.org/10.1038/oncsis.2016.67 Google Scholar
  3. 3.
    Kang Y, Massagué J (2004) Epithelial-mesenchymal transitions: twist in development and metastasis. [Short Survey]. Cell 118(3):277–279.  https://doi.org/10.1016/j.cell.2004.07.011 Google Scholar
  4. 4.
    Thiery JP, Morgan M (2004) Breast cancer progression with a twist. Nat Med 10:777–778.  https://doi.org/10.1038/nm0804-777 Google Scholar
  5. 5.
    Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial–mesenchymal transitions. [review article]. Nat Rev Mol Cell Biol 7:131.  https://doi.org/10.1038/nrm1835 Google Scholar
  6. 6.
    Ahmad A, Sarkar SH, Bitar B, Ali S, Aboukameel A, Sethi S, Li Y, Bao B, Kong D, Banerjee S, Padhye SB, Sarkar FH (2012) Garcinol Regulates EMT and Wnt Signaling Pathways In Vitro and In Vivo, Leading to Anticancer Activity against Breast Cancer Cells. Mol Cancer Ther 11(10):2193–2201.  https://doi.org/10.1158/1535-7163.mct-12-0232-t Google Scholar
  7. 7.
    Debies MT, Gestl SA, Mathers JL, Mikse OR, Leonard TL, Moody SE, Chodosh LA, Cardiff RD, Gunther EJ (2008) Tumor escape in a Wnt1-dependent mouse breast cancer model is enabled by p19(Arf)/p53 pathway lesions but not p16(Ink4a) loss. J Clin Invest 118(1):51–63.  https://doi.org/10.1172/JCI33320 Google Scholar
  8. 8.
    Li Y, Wicha MS, Schwartz SJ, Sun D (2011) Implications of cancer stem cell theory for cancer chemoprevention by natural dietary compounds. [Review]. J Nutr Biochem 22(9):799–806.  https://doi.org/10.1016/j.jnutbio.2010.11.001 Google Scholar
  9. 9.
    Bao B, Ahmad A, Li Y, Azmi AS, Ali S, Banerjee S, Kong D, Sarkar FH (2012) Targeting CSCs within the tumor microenvironment for cancer therapy: a potential role of mesenchymal stem cells. Expert Opin Ther Targets 16(10):1041–1054.  https://doi.org/10.1517/14728222.2012.714774 Google Scholar
  10. 10.
    Wang Z, Li Y, Ahmad A, Azmi AS, Kong D, Banerjee S, Sarkar FH (2010) Targeting miRNAs involved in cancer stem cell and EMT regulation: an emerging concept in overcoming drug resistance. [Article]. Drug Resist Updat 13(4–5):109–118.  https://doi.org/10.1016/j.drup.2010.07.001 Google Scholar
  11. 11.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. [Review]. Cell 144(5):646–674.  https://doi.org/10.1016/j.cell.2011.02.013 Google Scholar
  12. 12.
    Suman P, Mishra S, Chander H (2018) High expression of FBP17 in invasive breast cancer cells promotes invadopodia formation. Med Oncol 35(5):71Google Scholar
  13. 13.
    Binayke A, Mishra S, Suman P, Das S, Chander H (2019) Awakening the "guardian of genome": reactivation of mutant p53. Cancer Chemother Pharmacol 83(1):1–15.  https://doi.org/10.1007/s00280-018-3701-x Google Scholar
  14. 14.
    Chander H, Truesdell P, Meens J, Craig AW (2013) Transducer of Cdc42-dependent actin assembly promotes breast cancer invasion and metastasis. Oncogene 32(25):3080–3090Google Scholar
  15. 15.
    Kremerskothen J, Plaas C, Büther K, Finger I, Veltel S, Matanis T, Liedtke T, Barnekow A (2003) Characterization of KIBRA, a novel WW domain-containing protein. [Article]. Biochem Biophys Res Commun 300(4):862–867.  https://doi.org/10.1016/S0006-291X(02)02945-5 Google Scholar
  16. 16.
    Hilton HN, Stanford PM, Harris J, Oakes SR, Kaplan W, Daly RJ, Ormandy CJ (2008) KIBRA interacts with discoidin domain receptor 1 to modulate collagen-induced signalling. [Article]. Biochim Biophys Acta, Mol Cell Res 1783(3):383–393.  https://doi.org/10.1016/j.bbamcr.2007.12.007 Google Scholar
  17. 17.
    Schneider A, Huentelman M, Kremerskothen J, Duning K, Spoelgen R, Nikolich K (2010) KIBRA: a new gateway to learning and memory? [Review]. Front Aging Neurosci 2(4).  https://doi.org/10.3389/neuro.24.004.2010
  18. 18.
    Yoshihama Y, Chida K, Ohno S (2012) The KIBRA-aPKC connection. Commun Integr Biol 5(2):146–151.  https://doi.org/10.4161/cib.18849 Google Scholar
  19. 19.
    Duning K, Schurek E-M, Schlüter M, Bayer M, Reinhardt H-C, Schwab A, Schaefer L, Benzing T, Schermer B, Saleem MA, Huber TB, Bachmann S, Kremerskothen J, Weide T, Pavenstädt H (2008) KIBRA modulates directional migration of podocytes. J Am Soc Nephrol 19(10):1891–1903.  https://doi.org/10.1681/asn.2007080916 Google Scholar
  20. 20.
    Herb A, Wisden W, Catania MV, Maréchal D, Dresse A, Seeburg PH (1996) Prominent dendritic localization in forebrain neurons of a novel mRNA and its product, dendrin. [Article]. Mol Cell Neurosci 8(5):367–374.  https://doi.org/10.1006/mcne.1996.0594 Google Scholar
  21. 21.
    Neuner-Jehle M, Denizot JP, Borbély AA, Mallet J (1996) Characterization and sleep deprivation-induced expression modulation of dendrin, a novel dendritic protein in rat brain neurons. J Neurosci Res 46(2):138–151.  https://doi.org/10.1002/(SICI)1097-4547(19961015)46:2<138::AID-JNR2>3.0.CO;2-I Google Scholar
  22. 22.
    Rayala SK, den Hollander P, Manavathi B, Talukder AH, Song C, Peng S, Barnekow A, Kremerskothen J, Kumar R (2006) Essential role of KIBRA in co-activator function of dynein light chain 1 in mammalian cells. J Biol Chem 281(28):19092–19099.  https://doi.org/10.1074/jbc.M600021200 Google Scholar
  23. 23.
    Ji M, Yang S, Chen Y, Xiao L, Zhang L, Dong J (2012) Phospho-regulation of KIBRA by CDK1 and CDC14 phosphatase controls cell-cycle progression. Biochem J 447(1):93–102.  https://doi.org/10.1042/bj20120751 Google Scholar
  24. 24.
    Xiao L, Chen Y, Ji M, Volle DJ, Lewis RE, Tsai M-Y, Dong J (2011) KIBRA protein phosphorylation is regulated by mitotic kinase Aurora and protein phosphatase 1. J Biol Chem 286(42):36304–36315.  https://doi.org/10.1074/jbc.M111.246850 Google Scholar
  25. 25.
    Yang S, Ji M, Zhang L, Chen Y, Wennmann DO, Kremerskothen J, Dong J (2014) Phosphorylation of KIBRA by the extracellular signal-regulated kinase (ERK)–ribosomal S6 kinase (RSK) cascade modulates cell proliferation and migration. Cell Signal 26(2):343–351.  https://doi.org/10.1016/j.cellsig.2013.11.012 Google Scholar
  26. 26.
    Mavuluri J, Beesetti S, Surabhi R, Kremerskothen J, Venkatraman G, Rayala SK (2016) Phosphorylation dependent regulation of DNA damage response of adaptor protein KIBRA in cancer cells. Mol Cell Biol 36(9):1354–1365.  https://doi.org/10.1128/MCB.01004-15
  27. 27.
    Dobrosotskaya I, Guy RK, James GL (1997) MAGI-1, a membrane-associated guanylate kinase with a unique arrangement of protein-protein interaction domains. [Article]. J Biol Chem 272(50):31589–31597.  https://doi.org/10.1074/jbc.272.50.31589 Google Scholar
  28. 28.
    Büther K, Plaas C, Barnekow A, Kremerskothen J (2004) KIBRA is a novel substrate for protein kinase Cζ. [Article]. Biochem Biophys Res Commun 317(3):703–707.  https://doi.org/10.1016/j.bbrc.2004.03.107 Google Scholar
  29. 29.
    Rizo J, Südhof TC (1998) C2-domains, structure and function of a universal Ca2+−binding domain. J Biol Chem 273(26):15879–15882.  https://doi.org/10.1074/jbc.273.26.15879 Google Scholar
  30. 30.
    Fanning AS, Anderson JM (1999) PDZ domains: fundamental building blocks in the organization of protein complexes at the plasma membrane. J Clin Investig 103(6):767–772Google Scholar
  31. 31.
    Kremerskothen J, Plaas C, Kindler S, Frotscher M, Barnekow A (2005) Synaptopodin, a molecule involved in the formation of the dendritic spine apparatus, is a dual actin/α-actinin binding protein. J Neurochem 92(3):597–606.  https://doi.org/10.1111/j.1471-4159.2004.02888.x Google Scholar
  32. 32.
    Kremerskothen J, Kindler S, Finger I, Veltel S, Barnekow A (2006) Postsynaptic recruitment of Dendrin depends on both dendritic mRNA transport and synaptic anchoring. J Neurochem 96(6):1659–1666.  https://doi.org/10.1111/j.1471-4159.2006.03679.x Google Scholar
  33. 33.
    Lauriat TL, Dracheva S, Kremerskothen J, Duning K, Haroutunian V, Buxbaum JD, Hyde TM, Kleinman JE, Alison McInnes L (2006) Characterization of KIAA0513, a novel signaling molecule that interacts with modulators of neuroplasticity, apoptosis, and the cytoskeleton. Brain Res 1121(1):1–11.  https://doi.org/10.1016/j.brainres.2006.08.099 Google Scholar
  34. 34.
    Shin K, Straight S, Margolis B (2005) PATJ regulates tight junction formation and polarity in mammalian epithelial cells. J Cell Biol 168(5):705–711.  https://doi.org/10.1083/jcb.200408064 Google Scholar
  35. 35.
    Shin K, Wang Q, Margolis B (2007) PATJ regulates directional migration of mammalian epithelial cells. EMBO Rep 8(2):158–164.  https://doi.org/10.1038/sj.embor.7400890 Google Scholar
  36. 36.
    Traer CJ, Rutherford AC, Palmer KJ, Wassmer T, Oakley J, Attar N, et al. (2007) SNX4 coordinates endosomal sorting of TfnR with dynein-mediated transport into the endocytic recycling compartment. Nat Cell Biol 9(12):1370.  https://doi.org/10.1038/ncb1656
  37. 37.
    Weigelt B, Peterse JL, Van't Veer LJ (2005) Breast cancer metastasis: markers and models. Nat Rev Cancer 5(8):591–602Google Scholar
  38. 38.
    Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, Viale A, Olshen AB, Gerald WL, Massagué J (2005) Genes that mediate breast cancer metastasis to lung. Nature 436(7050):518–524Google Scholar
  39. 39.
    Bos PD, Zhang XH-F, Nadal C, Shu W, Gomis RR, Nguyen DX, Minn AJ, van de Vijver MJ, Gerald WL, Foekens JA, Massagué J (2009) Genes that mediate breast cancer metastasis to the brain. Nature 459(7249):1005–1009Google Scholar
  40. 40.
    Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordón-Cardo C, Guise TA, Massagué J (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3(6):537–549Google Scholar
  41. 41.
    Hilton HN, Stanford PM, Harris J, Oakes SR, Kaplan W, Daly RJ, Ormandy CJ (2008) KIBRA interacts with discoidin domain receptor 1 to modulate collagen-induced signalling. Biochimica et Biophysica Acta (BBA)-Mol Cell Res 1783(3):383–393.  https://doi.org/10.1016/j.bbamcr.2007.12.007 Google Scholar
  42. 42.
    Duning K, Schurek E-M, Schlüter M, Bayer M, Reinhardt H-C, Schwab A, Schaefer L, Benzing T, Schermer B, Saleem MA, Huber TB, Bachmann S, Kremerskothen J, Weide T, Pavenstädt H (2008) KIBRA modulates directional migration of podocytes. J Am Soc Nephrol: JASN 19(10):1891–1903.  https://doi.org/10.1681/ASN.2007080916 Google Scholar
  43. 43.
    Barker KT, Martindale JE, Mitchell PJ, Kamalati T, Page MJ, Phippard DJ et al (1995) Expression patterns of the novel receptor-like tyrosine kinase, DDR, in human breast tumours. [Article]. Oncogene 10(3):569–575Google Scholar
  44. 44.
    Vogel WF, Aszódi A, Alves F, Pawson T (2001) Discoidin domain receptor 1 tyrosine kinase has an essential role in mammary gland development. [Article]. Mol Cell Biol 21(8):2906–2917.  https://doi.org/10.1128/MCB.21.8.2906-2917.2001 Google Scholar
  45. 45.
    Fata JE, Werb Z, Bissell MJ (2004) Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes. [Review]. Breast Cancer Res 6(1):1–11Google Scholar
  46. 46.
    Faraci-Orf E, McFadden C, Vogel WF (2006) DDR1 signaling is essential to sustain Stat5 function during lactogenesis. J Cell Biochem 97(1):109–121.  https://doi.org/10.1002/jcb.20618 Google Scholar
  47. 47.
    Sun R, Gao P, Chen L, Ma D, Wang J, Oppenheim JJ, Zhang N (2005) Protein kinase C ζ is required for epidermal growth factor–induced chemotaxis of human breast Cancer cells. Cancer Res 65(4):1433–1441.  https://doi.org/10.1158/0008-5472.can-04-1163 Google Scholar
  48. 48.
    Wu J, Zhang B, Wu M, Li H, Niu R, Ying G, Zhang N (2010) Screening of a PKC ζ-specific kinase inhibitor PKCzI257.3 which inhibits EGF-induced breast cancer cell chemotaxis. [journal article]. Investig New Drugs 28(3):268–275.  https://doi.org/10.1007/s10637-009-9242-8 Google Scholar
  49. 49.
    Zhang F, Zhang X, Li M, Chen P, Zhang B, Guo H, Cao W, Wei X, Cao X, Hao X, Zhang N (2010) mTOR complex component Rictor interacts with PKCζ and regulates Cancer cell metastasis. Cancer Res 70(22):9360–9370.  https://doi.org/10.1158/0008-5472.can-10-0207 Google Scholar
  50. 50.
    Urtreger AJ, Grossoni, VC, Falbo, KB, Kazanietz, MG, & Bal de Kier Joffe, ED (2005) Atypical protein kinase C-ζ modulates clonogenicity, motility, and secretion of proteolytic enzymes in murine mammary cells. Molecular Carcinogenesis: Published in cooperation with the University of Texas MD Anderson Cancer Center 42(1):29–39.  https://doi.org/10.1002/mc.20066
  51. 51.
    Curat CA, Vogel WF (2002) Discoidin domain receptor 1 controls growth and adhesion of mesangial cells. [Article]. J Am Soc Nephrol 13(11):2648–2656.  https://doi.org/10.1097/01.ASN.0000032419.13208.0C Google Scholar
  52. 52.
    Xie J, Haslam SZ (1997) Extracellular matrix regulates ovarian hormone-dependent proliferation of mouse mammary epithelial cells. [Article]. Endocrinology 138(6):2466–2473.  https://doi.org/10.1210/en.138.6.2466 Google Scholar
  53. 53.
    Paul A, Danley M, Saha B, Tawfik O, Paul S (2015) PKCζ promotes breast Cancer invasion by regulating expression of E-cadherin and zonula Occludens-1 (ZO-1) via NFκB-p65. Sci Rep 5:12520.  https://doi.org/10.1038/srep12520
  54. 54.
    Pfister KK, Fisher EMC, Gibbons IR, Hays TS, Holzbaur ELF, McIntosh JR, Porter ME, Schroer TA, Vaughan KT, Witman GB, King SM, Vallee RB (2005) Cytoplasmic dynein nomenclature. J Cell Biol 171(3):411–413.  https://doi.org/10.1083/jcb.200508078 Google Scholar
  55. 55.
    Rayala SK, den Hollander P, Balasenthil S, Yang Z, Broaddus RR, Kumar R (2005) Functional regulation of oestrogen receptor pathway by the dynein light chain 1. EMBO Rep 6(6):538–544.  https://doi.org/10.1038/sj.embor.7400417 Google Scholar
  56. 56.
    Daniels TR, Delgado T, Rodriguez JA, Helguera G, Penichet ML (2006) The transferrin receptor part I: biology and targeting with cytotoxic antibodies for the treatment of cancer. Clin Immunol 121(2):144–158.  https://doi.org/10.1016/j.clim.2006.06.010 Google Scholar
  57. 57.
    Shin K, Fogg VC, Margolis B (2006) Tight junctions and cell polarity. Annu Rev Cell Dev Biol 22(1):207–235.  https://doi.org/10.1146/annurev.cellbio.22.010305.104219 Google Scholar
  58. 58.
    Margolis B, Borg J-P (2005) Apicobasal polarity complexes. J Cell Sci 118(22):5157–5159.  https://doi.org/10.1242/jcs.02597 Google Scholar
  59. 59.
    Knight JF, Sung VYC, Kuzmin E, Couzens AL, de Verteuil DA, Ratcliffe CDH, Coelho PP, Johnson RM, Samavarchi-Tehrani P, Gruosso T, Smith HW, Lee W, Saleh SM, Zuo D, Zhao H, Guiot MC, Davis RR, Gregg JP, Moraes C, Gingras AC, Park M (2018) KIBRA (WWC1) is a metastasis suppressor gene affected by chromosome 5q loss in triple-negative breast Cancer. Cell Rep 22(12):3191–3205.  https://doi.org/10.1016/j.celrep.2018.02.095 Google Scholar
  60. 60.
    Arivazhagan L, Surabhi RP, Kanakarajan A, Sundaram S, Pitani RS, et al. (2017) KIBRA attains oncogenic activity by repressing RASSF1A. Br J Cancer 117(4):553.  https://doi.org/10.1038/bjc.2017.192

Copyright information

© Arányi Lajos Foundation 2019

Authors and Affiliations

  1. 1.Laboratory of Molecular Medicine, Department of Human Genetics and Molecular MedicineCentral University of PunjabBathindaIndia

Personalised recommendations