Advertisement

Interaction of Breast Cancer and Insulin Resistance on PD1 and TIM3 Expression in Peripheral Blood CD8 T Cells

  • Miriam Victoria Martín-Manzo
  • Carlos Lara
  • Cruz Vargas-de-Leon
  • Julio Carrero
  • Gloria Queipo
  • Miguel Fonseca-Sanchez
  • Nancy R. Mejia-Dominguez
  • David Kershenobich
  • Srinivas Mummidi
  • Alejandro Zentella-Dehesa
  • Joselin HernandezEmail author
Original Article

Abstract

Epidemiological evidence points to a link between insulin resistance (IR) and breast cancer (BrCA). Insulin plays a role in CD8+ T cells (CD8T) differentiation and function and affects adipocytokines levels. CD8T activity in BrCA is associated with favorable outcome; while PD1 and TIM3 are markers of CD8T exhaustion and play critical roles in the negative regulation of T cell responses. Patients with (BrCA) have high expression levels of PD1 on circulating. Therefore, we hypothesized that BrCA and IR could affect PD1 and/or TIM3 expression on circulating CD8T. We determine PD1 and TIM3 expression on CD8T and analyze the relationship of CD8T phenotype with serum insulin and plasma adipocytokines levels in the different groups. We enrolled four groups of treatment-naive patients: women without neoplasms (Neo-)/without IR (IR-), Neo−/with IR (IR+), BrCa/IR- and BrCa/IR+. We found interactions between BrCA and IR with respect to TIM3 on naïve and central memory (CM) CD8T subsets. Furthermore, BrCA had a greater PD1 + TIM3- CD8T frequency in CD8T subsets than Neo-. IR+ presented a significantly lower PD1 + TIM3- frequency in CD8T subsets compare to Non-IR. In addition, we found a negative correlation between insulin levels, HOMA and frequency of PD1 + TIM3- in CD8T and a positive correlation between adiponectin levels and the frequency PD1 + TIM3- in CD8T. The increased expression of PD1 on different subsets of CD8T from BrCa patients is consistent with immunological tolerance, whereas IR has a contrary effect. IR could have a deleterious role in the activation of CD8T that can be relevant to new BrCa immunotherapy.

Keywords

Breast cancer Insulin resistance TIM3 PD1 

Notes

Acknowledgments

Miriam Victoria Martín Manzo is a doctoral student from Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM) and received fellowship 243633 from Consejo Nacional de Ciencia y Tecnología (CONACYT). This paper is part of her doctoral thesis.

The authors wish to thank Dra. Concepción Agundis-Mata and Dra. Gabriela Gutiérrez for general laboratory facilities, as well as PhD Enrique Ortega, PhD Erasmo Martínez and PhD Ali Pereyra for critical review. They highly appreciate the help of M.Sc. Carlos Castellanos Barba and the LabNalCit-UNAM (CONACYT). In addition, they thank to Neyla Baltazar from Hospital General de México “Dr. Eduardo Liceaga” for blood sample collection and metabolic parameters determination.

Funding

This study was funded by Consejo Nacional de Ciencia y Tecnología FOSISS-233471, SEP-134341 and internal resources of the “Programa Institucional de Cáncer de Mama” (IIB). Work in SM’s lab is supported by NHI-R01A1119131.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

The study was approved by the ethical and research committees of the General ospital of Mexico “Dr. Eduardo Liceaga” (DI/15/UME/03/47 and DI/12/III/4/30). All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

12253_2019_610_MOESM1_ESM.docx (1006 kb)
ESM 1 (DOCX 1006 kb)

References

  1. 1.
    Sun Y-S, Zhao Z, Yang Z-N, Xu F, Lu HJ, Zhu ZY, Shi W, Jiang J, Yao PP, Zhu HP (2017) Risk Factors and Preventions of Breast Cancer. Int J Biol Sci 13:1387–1397CrossRefPubMedGoogle Scholar
  2. 2.
    Sun W, Lu J, Wu S, Bi Y, Mu Y, Zhao J, Liu C, Chen L, Shi L, Li Q, Yang T, Yan L, Wan Q, Liu Y, Wang G, Luo Z, Tang X, Chen G, Huo Y, Gao Z, Su Q, Ye Z, Wang Y, Qin G, Deng H, Yu X, Shen F, Chen L, Zhao L, Wang T, Sun J, Xu M, Xu Y, Chen Y, Dai M, Zhang J, Zhang D, Lai S, Li D, Ning G, Wang W (2016) Association of insulin resistance with breast, ovarian, endometrial and cervical cancers in non-diabetic women. Am J Cancer Res 6:2334–2344PubMedGoogle Scholar
  3. 3.
    Gunter MJ, Xie X, Xue X, Kabat GC, Rohan TE, Wassertheil-Smoller S, Ho GYF, Wylie-Rosett J, Greco T, Yu H, Beasley J, Strickler HD (2015) Breast cancer risk in metabolically healthy but overweight postmenopausal women. Cancer Res 75:270–274, Breast Cancer Risk in Metabolically Healthy but Overweight Postmenopausal WomenGoogle Scholar
  4. 4.
    Nam S, Park S, Park HS, Kim S, Kim JY, Kim SI (2016) Association between insulin resistance and luminal B subtype breast cancer in postmenopausal women. Medicine (Baltimore) 95:e2825CrossRefGoogle Scholar
  5. 5.
    Shanik MH, Xu Y, Skrha J, Dankner R, Zick Y, Roth J (2008) Insulin resistance and hyperinsulinemia: is hyperinsulinemia the cart or the horse? Diabetes Care Suppl 2:S262-S268Google Scholar
  6. 6.
    Arcidiacono B, Iiritano S, Nocera A et al (2012) Insulin resistance and cancer risk: An Overview of the pathogenetic mechanisms. Exp Diabetes Res 2012:789174Google Scholar
  7. 7.
    Yadav A, Kataria MA, Saini V, Yadav A (2013) Role of leptin and adiponectin in insulin resistance. Clin Chim Acta 18(417):80–84CrossRefGoogle Scholar
  8. 8.
    Paz-Filho G, Mastronardi C, Wong ML, Licinio J (2012) Leptin therapy, insulin sensitivity, and glucose homeostasis. Indian J Endocrinol Metab 16(Suppl 3):S549–S555CrossRefPubMedGoogle Scholar
  9. 9.
    Paz-Filho G, Lim EL, Wong ML, Licinio J (2011) Associations between adipokines and obesity-related cancer. Front Biosci (Landmark Ed) 16:1634–1650CrossRefGoogle Scholar
  10. 10.
    Ali HR, Provenzano E, Dawson SJ, Blows FM, Liu B, Shah M, Earl HM, Poole CJ, Hiller L, Dunn JA, Bowden SJ, Twelves C, Bartlett JMS, Mahmoud SMA, Rakha E, Ellis IO, Liu S, Gao D, Nielsen TO, Pharoah PDP, Caldas C (2014) Association between CD8+ infiltration and breast cancer survival in 12, 439 patients. Ann Oncol 25:1536–1543CrossRefPubMedGoogle Scholar
  11. 11.
    Matsumot H, Thike AA, Li H et al (2016) Increased CD4 and CD8-positive T cell infiltrate signifies good prognosis in a subset of triple-negative breast cancer. Breast Cancer Res Treat 156:237–247CrossRefGoogle Scholar
  12. 12.
    Fischer HJ, Sie C, Schumnn E et al (2017) The insulin receptor plays a critical role in T cell function and adaptive immunity. J Immunol 198:1910–1920CrossRefPubMedGoogle Scholar
  13. 13.
    Han JM, Patterson SJ, Speck M, Ehses JA, Levings MK (2014) Insulin inhibits IL-10-mediated regulatory T cell function: implications for obesity. J Immunol 192:623–629CrossRefPubMedGoogle Scholar
  14. 14.
    Granados HM, Draghi A 2nd, Tsurutani N et al (2017) Programmed cell death-1, PD-1, is dysregulated in T cells from children with new onset type 1 diabetes. PLoS One 12:e0183887CrossRefPubMedGoogle Scholar
  15. 15.
    Buchbinder EI, Desai A (2016) CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am J Clin Oncol 39:98–106CrossRefPubMedGoogle Scholar
  16. 16.
    Jin HT, Ahmed R, Okazaki T (2011) Role of PD-1 in regulating T-cell immunity. Curr Top Microbiol Immunol 350:17–37PubMedGoogle Scholar
  17. 17.
    Keir ME, Butte MJ, Freeman GJ, Sharpe AH (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704CrossRefPubMedGoogle Scholar
  18. 18.
    Sharpe AH, Pauken KE (2018) The diverse functions of the PD1 inhibitory pathway. Nat Rev Immunol 18:153–167CrossRefPubMedGoogle Scholar
  19. 19.
    Muenst S, Soysal SD, Gao F, Obermann EC, Oertli D, Gillanders WE (2013) The presence of programmed death 1 (pd-1) positive tumor-infiltrating lymphocytes is associated with poor prognosis in human breast cancer. Breast Cancer Res Treat 139:667–676CrossRefPubMedGoogle Scholar
  20. 20.
    Ghebeh H, Mohammed S, Al-Omair A et al (2006) The B7-H1 (PD-L1) T lymphocyte-inhibitory molecule is expressed in breast cancer patients with infiltrating ductal carcinoma: correlation with important high-risk prognostic factors. Neoplasia 8:190–198CrossRefPubMedGoogle Scholar
  21. 21.
    Poschke I, De Boniface J, Mao Y, Kiessling R (2012) Tumor-induced changes in the phenotype of blood-derived and tumor-associated T cells of early stage breast cancer patients. Int J Cancer 131:1611–1620CrossRefPubMedGoogle Scholar
  22. 22.
    Wherry EJ, Kurachi M (2015) Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol 15:486–499CrossRefPubMedGoogle Scholar
  23. 23.
    Okoye IS, Houghton M, Tyrrell L, Barakat K, Elahi S (2017) Coinhibitory Receptor Expression and Immune Checkpoint Blockade: Maintaining a Balance in CD8+ T Cell Responses to Chronic Viral Infections and Cancer. Front Immunol 8:1215CrossRefPubMedGoogle Scholar
  24. 24.
    Fourcade J, Sun Z, Benallaoua M, Guillaume P, Luescher IF, Sander C, Kirkwood JM, Kuchroo V, Zarour HM (2010) Upregulation of TIM3 and PD-1 expression is associated with tumor antigen-specific CD8+T cell dysfunction in melanoma patients. J Exp Med 207:2175–2186CrossRefPubMedGoogle Scholar
  25. 25.
    Gorman JV, Colgan JD (2014) Regulation of T cell responses by the receptor molecule Tim-3. Immunol Res 59:56–65Google Scholar
  26. 26.
    Fuertes-Marraco SA, Neubert NJ, Verdeil G, Speiser DE (2015) Inhibitory receptors beyond T cell exhaustion. Front Immunol 6:310CrossRefPubMedGoogle Scholar
  27. 27.
    Kuss I, Schaefer C, Godfrey TE, Ferris RL, Harris JM, Gooding W, Whiteside TL (2005) Recent thymic emigrants and subsets of naïve and memory T cells in the circulation of patients with head and neck cancer. Clin Immunol 116:27–36CrossRefPubMedGoogle Scholar
  28. 28.
    Anderson AC (2012) Tim-3, a negative regulator of anti-tumor immunity. Curr Opin Immunol 24:213–216CrossRefPubMedGoogle Scholar
  29. 29.
    Zhang Y, Cai P, Li L, Shi L, Chang P, Liang T, Yang Q, Liu Y, Wang L, Hu L (2017) Co-expression of TIM-3 and CEACAM1 promotes T cell exhaustion in colorectal cancer patients. Int Immunopharmacol 43:210–218CrossRefPubMedGoogle Scholar
  30. 30.
    Liu H, Zhi L, Duan N, Su P (2016) Abnormal expression of Tim-3 antigen on peripheral blood T cells is associated with progressive disease in osteosarcoma patients. FEBS Open Bio 6:807–815CrossRefPubMedGoogle Scholar
  31. 31.
    Wu J, Liu C, Qin S, Hou H (2013) The expression of Tim3 in peripheral blood of ovarian cancer. DNA Cell Biol 32:648–653CrossRefPubMedGoogle Scholar
  32. 32.
    Avery L, Filderman J, Szymczak-Worman AL, Kane LP (2018) Tim-3 co-stimulation promotes short-term effector T cells, restricts memory precursors and is dispensable for T cell exhaustion. Proc Natl Acad Sci U S A 115(10):2455–2460CrossRefPubMedGoogle Scholar
  33. 33.
    Qiu Y, Chen J, Liao H et al (2012) Tim-3-expressing CD4(+) and CD8(+) T cells in human tuberculosis (TB) exhibit polarized effector memory phenotypes and stronger anti-TB effector functions. PLoS Pathog 8:e1002984CrossRefPubMedGoogle Scholar
  34. 34.
    Gorman JV, Starbeck-Miller G, Pham NL et al (2014) Tim-3 directly enhances CD8 T cell responses to acute Listeria monocytogenes infection. J Immunol 192:3133–3142CrossRefPubMedGoogle Scholar
  35. 35.
    Meggyes M, Miko E, Polgar B, Bogar B, Farkas B, Illes Z, Szereday L (2014) Peripheral blood TIM-3 positive NK and CD8+ T cells throughout pregnancy: TIM3/galectin-9 interaction and its possible role during pregnancy. PLoS One 9:e92371CrossRefPubMedGoogle Scholar
  36. 36.
    Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, Ohsugi M, Otsu M, Hara K, Ueki K, Sugiura S, Yoshimura K, Kadowaki T, Nagai R (2009) CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med 15:914–920CrossRefPubMedGoogle Scholar
  37. 37.
    DeNardo DG, Coussens LM (2007) Inflammation and breast cancer. Balancing immune response: crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Res 9:212CrossRefPubMedGoogle Scholar
  38. 38.
    Pierce BL, Ballard-Barbash R, Bernstein L, Baumgartner RN, Neuhouser ML, Wener MH, Baumgartner KB, Gilliland FD, Sorensen BE, McTiernan A, Ulrich CM (2009) Elevated biomarkers of inflammation are associated with reduced survival among breast cancer patients. J Clin Oncol 27:3437–3444CrossRefPubMedGoogle Scholar
  39. 39.
    Patsoukis N, Bardhan K, Chatterjee P, Sari D, Liu B, Bell LN, Karoly ED, Freeman GJ, Petkova V, Seth P, Li L, Boussiotis VA (2015) PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat Commun 6:6692CrossRefPubMedGoogle Scholar
  40. 40.
    Maeda N, Shimomura I, Kishida K et al (2002) Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med 8(7):731–737CrossRefPubMedGoogle Scholar
  41. 41.
    Yadav A, Jyoti P, Jain SK, Bhattacharjee J (2011) Correlation of adiponectin and leptin with insulin resistance: a pilot study in healthy north Indian population. Indian J Clin Biochem 26(2):193–196CrossRefPubMedGoogle Scholar
  42. 42.
    Osegbe I, Okpara H, Azinge E (2016) Relationship between serum leptin and insulin resistance among obese Nigerian women. Ann Afr Med 15(1):14–9Google Scholar
  43. 43.
    Carbone F, La Rocca C, Matarese G (2012) Immunological functions of leptin and adiponectin. Biochimie 94(10):2082–8, 2088Google Scholar
  44. 44.
    Tsang JY, Li D, Ho D, Peng J et al (2011) Novel immunomodulatory effects of adiponectin on dendritic cell functions. Int Immunopharmacol 11(5):604–609CrossRefPubMedGoogle Scholar
  45. 45.
    Rodríguez L, Graniel J, Ortiz R (2007) Effect of leptin on activation and cytokine synthesis in peripheral blood lymphocytes of malnourished infected children. Clin Exp Immunol 148(3):478–485CrossRefPubMedGoogle Scholar

Copyright information

© Arányi Lajos Foundation 2019

Authors and Affiliations

  • Miriam Victoria Martín-Manzo
    • 1
    • 2
  • Carlos Lara
    • 3
  • Cruz Vargas-de-Leon
    • 4
  • Julio Carrero
    • 5
  • Gloria Queipo
    • 6
    • 7
  • Miguel Fonseca-Sanchez
    • 6
  • Nancy R. Mejia-Dominguez
    • 8
  • David Kershenobich
    • 2
    • 9
  • Srinivas Mummidi
    • 10
  • Alejandro Zentella-Dehesa
    • 11
  • Joselin Hernandez
    • 2
    • 10
    • 12
    Email author
  1. 1.Programa de Doctorado en Ciencias BiomédicasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
  2. 2.HIPAM, Unidad de Investigación en Medicina Experimental, Facultad de MedicinaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
  3. 3.Servicio de OncologíaHospital General de México Dr. Eduardo LiceagaCiudad de MéxicoMéxico
  4. 4.Escuela Superior de MedicinaInstituto Politécnico NacionalCiudad de MéxicoMéxico
  5. 5.Departamento de Inmunología, Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
  6. 6.Departamento de GenéticaHospital General de México Dr. Eduardo LiceagaCiudad de MéxicoMéxico
  7. 7.Facultad de Medicina Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
  8. 8.Red de Apoyo a la Investigación (RAI)CIC-Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
  9. 9.Dirección GeneralInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránCiudad de MéxicoMexico
  10. 10.South Texas Diabetes and Obesity InstituteUniversity of Texas Rio Grande ValleyEdinburgUSA
  11. 11.Programa Institucional de Cáncer de Mama, Departamento de Toxicología Ambiental y Medicina Genómica, IIBUniversidad Nacional Autónoma de México, Departamento de Bioquímica INCMNSZ; Centro de Cáncer, CM ABCiudad de MéxicoMexico
  12. 12.Research DeparmentUniversidad Mexico Americana del NorteReynosaMexico

Personalised recommendations