Receptor Tyrosine Kinase EphB3: a Prognostic Indicator in Colorectal Carcinoma

  • Zhuoqi Xuan
  • Jianming Huang
  • Lin Gao
  • Yong Wang
  • Jiandong WangEmail author
  • Yueming SunEmail author
Original Article


Although EphB3 expression is down-regulated in colorectal cancer (CRC) cells compared with normal intestinal epithelial cells, the relationship between EphB3 expression and clinicopathological parameters in CRC is unclear. We examined EphB3 expression in 128 CRC tissue specimens and in 19 adenoma specimens using immunohistochemistry. The relationships between EphB3 expression and clinicopathological parameters, KRAS mutations, BRAF V600E mutation, MSI and survival were evaluated using Spearman’s rank correlation and Kaplan–Meier survival analyses, respectively. CpG methylation in the EphB3 promoter was examined in four human CRC cell lines and tissues. EphB3 was strongly expressed in all normal intestinal epithelial cells (128/128) and adenoma cells (19/19). In CRC tumor cells, EphB3 expression was negative or weak in 41.4% (53/128), moderate in 26.6% (34/128), and strong in 32.0% (41/128) of samples. EphB3 expression was negatively associated with invasive depth (P = 0.016, rs = −0.213), lymph node metastasis (P = 0.000, rs = −0.490), and TNM stage (P = 0.000, rs = −0.390), and was positively associated with poor differentiation (P = 0.001, rs = 0.290), BRAF V600E mutation (P = 0.008, rs = 0.235), and longer overall survival (P < 0.001). In multivariate analysis, EphB3 expression (P = 0.007) and lymph node metastasis (P < 0.001) were independent prognostic factors for poor survival. Hypermethylation of the EphB3 promoter was detected in cell lines and CRC tissues. EphB3 is down-regulated in CRC compared to normal mucosa. Hypermethylation of CpG island is contributed to downregulation of EphB3 in CRC. EphB3 expression in tumor cells may be a useful prognostic indicator for patients with CRC.


Colorectal cancer EphB3 Hypermethylation Lymph node metastasis TNM stage 



The authors wish to thank the patients who participate in this study. This study was supported by grants from the National Basic Research Priorities Program 973 Project (2014CB744504) from the Ministry of Science and Technology of China and the National Natural Science Foundation of China (81371611).

We thank Anne M. O’Rourke, PhD, from Liwen Bianji, Edanz Group China (, for editing the English text of a draft of this manuscript.

Compliance with Ethical Standards

Conflicts of Interest

The authors declare no conflicts of interest.


  1. 1.
    (1997) Unified nomenclature for Eph family receptors and their ligands, the ephrins. Eph Nomenclature Committee. Cell 90(3):403–404Google Scholar
  2. 2.
    Hirai H, Maru Y, Hagiwara K, Nishida J, Takaku F (1987) A novel putative tyrosine kinase receptor encoded by the eph gene. Science 238(4834):1717–1720CrossRefPubMedGoogle Scholar
  3. 3.
    Wilkinson DG (2001) Multiple roles of EPH receptors and ephrins in neural development. Nat Rev Neurosci 2(3):155–164. CrossRefPubMedGoogle Scholar
  4. 4.
    Xu Q, Mellitzer G, Robinson V, Wilkinson DG (1999) In vivo cell sorting in complementary segmental domains mediated by Eph receptors and ephrins. Nature 399(6733):267–271. CrossRefPubMedGoogle Scholar
  5. 5.
    Pasquale EB (2008) Eph-ephrin bidirectional signaling in physiology and disease. Cell 133(1):38–52. CrossRefPubMedGoogle Scholar
  6. 6.
    Zeng G, Hu Z, Kinch MS, Pan CX, Flockhart DA, Kao C, Gardner TA, Zhang S, Li L, Baldridge LA, Koch MO, Ulbright TM, Eble JN, Cheng L (2003) High-level expression of EphA2 receptor tyrosine kinase in prostatic intraepithelial neoplasia. Am J Pathol 163(6):2271–2276. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Thaker PH, Deavers M, Celestino J, Thornton A, Fletcher MS, Landen CN, Kinch MS, Kiener PA, Sood AK (2004) EphA2 expression is associated with aggressive features in ovarian carcinoma. Clin Cancer Res 10(15):5145–5150.
  8. 8.
    Wang J, Kataoka H, Suzuki M, Sato N, Nakamura R, Tao H, Maruyama K, Isogaki J, Kanaoka S, Ihara M, Tanaka M, Kanamori M, Nakamura T, Shinmura K, Sugimura H (2005) Downregulation of EphA7 by hypermethylation in colorectal cancer. Oncogene 24(36):5637–5647. CrossRefPubMedGoogle Scholar
  9. 9.
    Chiu ST, Chang KJ, Ting CH, Shen HC, Li H, Hsieh FJ (2009) Over-expression of EphB3 enhances cell-cell contacts and suppresses tumor growth in HT-29 human colon cancer cells. Carcinogenesis 30(9):1475–1486. CrossRefPubMedGoogle Scholar
  10. 10.
    Oricchio E, Nanjangud G, Wolfe AL, Schatz JH, Mavrakis KJ, Jiang M, Liu X, Bruno J, Heguy A, Olshen AB, Socci ND, Teruya-Feldstein J, Weis-Garcia F, Tam W, Shaknovich R, Melnick A, Himanen JP, Chaganti RS, Wendel HG (2011) The Eph-receptor A7 is a soluble tumor suppressor for follicular lymphoma. Cell 147(3):554–564. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Saito T, Masuda N, Miyazaki T, Kanoh K, Suzuki H, Shimura T, Asao T, Kuwano H (2004) Expression of EphA2 and E-cadherin in colorectal cancer: correlation with cancer metastasis. Oncol Rep 11(3):605–611PubMedGoogle Scholar
  12. 12.
    Gao W, Zhang Q, Wang Y, Wang J, Zhang S (2017) EphB3 protein is associated with histological grade and FIGO stage in ovarian serous carcinomas. APMIS 125(2):122–127. CrossRefPubMedGoogle Scholar
  13. 13.
    Herrem CJ, Tatsumi T, Olson KS, Shirai K, Finke JH, Bukowski RM, Zhou M, Richmond AL, Derweesh I, Kinch MS, Storkus WJ (2005) Expression of EphA2 is prognostic of disease-free interval and overall survival in surgically treated patients with renal cell carcinoma. Clin Cancer Res 11(1):226–231Google Scholar
  14. 14.
    Brannan JM, Dong W, Prudkin L, Behrens C, Lotan R, Bekele BN, Wistuba I, Johnson FM (2009) Expression of the receptor tyrosine kinase EphA2 is increased in smokers and predicts poor survival in non-small cell lung cancer. Clin Cancer Res 15(13):4423–4430.
  15. 15.
    Wang L, Hu H, Tian F, Zhou W, Zhou S, Wang J (2015) Expression of EphA2 protein is positively associated with age, tumor size and Fuhrman nuclear grade in clear cell renal cell carcinomas. Int J Clin Exp Pathol 8(10):13374–13380PubMedPubMedCentralGoogle Scholar
  16. 16.
    Bai YQ, Zhang JY, Bai CY, Xu XE, Wu JY, Chen B, Wu ZY, Wang SH, Shen J, Shen JH, Yao XD, Gao LZ, Wu B, Gu HL, Liu XH, Li X, Li EM, Xu LY (2015) Low EphA7 expression correlated with lymph node metastasis and poor prognosis of patients with esophageal squamous cell carcinoma. Acta Histochem Cytochem 48(3):75–81. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Li S, Wu Z, Ma P, Xu Y, Chen Y, Wang H, He P, Kang Z, Yin L, Zhao Y, Zhang X, Xu X, Ma X, Guan M (2017) Ligand-dependent EphA7 signaling inhibits prostate tumor growth and progression. Cell Death Dis 8(10):e3122. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Dawson DW, Hong JS, Shen RR, French SW, Troke JJ, Wu YZ, Chen SS, Gui D, Regelson M, Marahrens Y, Morse HC 3rd, Said J, Plass C, Teitell MA (2007) Global DNA methylation profiling reveals silencing of a secreted form of Epha7 in mouse and human germinal center B-cell lymphomas. Oncogene 26(29):4243–4252. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Bohme B, Holtrich U, Wolf G, Luzius H, Grzeschik KH, Strebhardt K, Rubsamen-Waigmann H (1993) PCR mediated detection of a new human receptor-tyrosine-kinase, HEK 2. Oncogene 8(10):2857–2862PubMedGoogle Scholar
  20. 20.
    Baker RK, Vanderboom AK, Bell GW, Antin PB (2001) Expression of the receptor tyrosine kinase gene EphB3 during early stages of chick embryo development. Mech Dev 104(1–2):129–132CrossRefPubMedGoogle Scholar
  21. 21.
    Kang JU, Koo SH, Kwon KC, Park JW, Kim JM (2009) Identification of novel candidate target genes, including EPHB3, MASP1 and SST at 3q26.2-q29 in squamous cell carcinoma of the lung. BMC Cancer 9:237. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ji XD, Li G, Feng YX, Zhao JS, Li JJ, Sun ZJ, Shi S, Deng YZ, Xu JF, Zhu YQ, Koeffler HP, Tong XJ, Xie D (2011) EphB3 is overexpressed in non-small-cell lung cancer and promotes tumor metastasis by enhancing cell survival and migration. Cancer Res 71(3):1156–1166. CrossRefPubMedGoogle Scholar
  23. 23.
    Li G, Ji XD, Gao H, Zhao JS, Xu JF, Sun ZJ, Deng YZ, Shi S, Feng YX, Zhu YQ, Wang T, Li JJ, Xie D (2012) EphB3 suppresses non-small-cell lung cancer metastasis via a PP2A/RACK1/Akt signalling complex. Nat Commun 3:667. CrossRefPubMedGoogle Scholar
  24. 24.
    Batlle E, Henderson JT, Beghtel H, van den Born MM, Sancho E, Huls G, Meeldijk J, Robertson J, van de Wetering M, Pawson T, Clevers H (2002) Beta-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell 111(2):251–263CrossRefPubMedGoogle Scholar
  25. 25.
    Jagle S, Ronsch K, Timme S, Andrlova H, Bertrand M, Jager M, Proske A, Schrempp M, Yousaf A, Michoel T, Zeiser R, Werner M, Lassmann S, Hecht A (2014) Silencing of the EPHB3 tumor-suppressor gene in human colorectal cancer through decommissioning of a transcriptional enhancer. Proc Natl Acad Sci U S A 111(13):4886–4891. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ronsch K, Jager M, Schopflin A, Danciu M, Lassmann S, Hecht A (2011) Class I and III HDACs and loss of active chromatin features contribute to epigenetic silencing of CDX1 and EPHB tumor suppressor genes in colorectal cancer. Epigenetics 6(5):610–622CrossRefPubMedGoogle Scholar
  27. 27.
    Batlle E, Bacani J, Begthel H, Jonkheer S, Gregorieff A, van de Born M, Malats N, Sancho E, Boon E, Pawson T, Gallinger S, Pals S, Clevers H (2005) EphB receptor activity suppresses colorectal cancer progression. Nature 435(7045):1126–1130. CrossRefPubMedGoogle Scholar

Copyright information

© Arányi Lajos Foundation 2018

Authors and Affiliations

  1. 1.Department of Colorectal Surgerythe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
  2. 2.Department of Gastrointestinal Surgerythe Jiangyin People’s HospitalJinagsuChina
  3. 3.Department of Pathology, Jinling HospitalNanjing University School of MedicineNanjingChina

Personalised recommendations