Advertisement

Identification of Key Potential Targets and Pathway for Arsenic Trioxide by Systemic Bioinformatics Analysis in Pancreatic Cancer

  • Yanan Pang
  • Zhiyong Liu
  • Shanrong Liu
Original Article

Abstract

Arsenic trioxide is an approved chemotheraputic agent for the treatment of acute promyelocytic leukemia (APL). Recently, numerous studies suggested that arsenic trioxide acts as anti-cancer roles in various human malignancies. However, the molecular mechanisms are not fully elucidated. In this study, we explored the critical targets of arsenic trioxide and their interaction network systematically by searching the publicly available published database like DrugBank (DB) and STRING. Seven direct protein targets (DPTs) and 111 DPT-associated genes were identified. The enrichment analysis of arsenic trioxide associated genes/proteins revealed 10 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Among these pathways, phosphatidylinositol-4,5-bisphosphate-3-kinase -Akt (PI3K-Akt) single pathway and pancreatic cancer pathway are highly correlated with arsenic trioxide and have 5 overlapped targets. Then we investigated the gene alternation of selected critical genes in pancreatic cancer studies using cBio portal. These results indicated that arsenic trioxide could act anti-tumor function through PI3K-Akt single pathway and identified critical genes might be therapeutic targets for pancreatic cancer.

Keywords

Arsenic trioxide Genes/proteins interaction Bioinformatics analysis Pancreatic cancer 

Notes

Acknowledgments

This work was supported by National Natural Science Foundation of China (grant numbers 81425019) and the Research Program of Specially Appointed Professor of Shanghai (grant numbers GZ2015009).

Compliance with Ethical Standards

All authors have approved the final manuscript.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. 1.
    Kulik-Kupka K, Koszowska A, Bronczyk-Puzon A et al (2016) Arsenic - poison or medicine? Med Pr 67(1):89–96.  https://doi.org/10.13075/mp.5893.00322 CrossRefPubMedGoogle Scholar
  2. 2.
    Wang ZG, Rivi R, Delva L, König A, Scheinberg DA, Gambacorti-Passerini C, Gabrilove JL, Warrell RP Jr, Pandolfi PP (1998) Arsenic trioxide and melarsoprol induce programmed cell death in myeloid leukemia cell lines and function in a PML and PML-RARalpha independent manner. Blood 92(5):1497–1504PubMedGoogle Scholar
  3. 3.
    Sun RC, Board PG, Blackburn AC (2011) Targeting metabolism with arsenic trioxide and dichloroacetate in breast cancer cells. Mol Cancer 10:142.  https://doi.org/10.1186/1476-4598-10-142 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ma ZB, Xu HY, Jiang M, Yang YL, Liu LX, Li YH (2014) Arsenic trioxide induces apoptosis of human gastrointestinal cancer cells. World J Gastroenterol 20(18):5505–5510.  https://doi.org/10.3748/wjg.v20.i18.5505 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Yang MH, Zang YS, Huang H, Chen K, Li B, Sun GY, Zhao XW (2014) Arsenic trioxide exerts anti-lung cancer activity by inhibiting angiogenesis. Curr Cancer Drug Targets 14(6):557–566CrossRefGoogle Scholar
  6. 6.
    Zheng L, Jiang H, Zhang ZW et al (2016) Arsenic trioxide inhibits viability and induces apoptosis through reactivating the Wnt inhibitor secreted frizzled related protein-1 in prostate cancer cells. Onco Targets Ther 9:885–894.  https://doi.org/10.2147/ott.s92129 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Gao JK, Wang LX, Long B, Ye XT, Su JN, Yin XY, Zhou XX, Wang ZW (2015) Arsenic trioxide inhibits cell growth and invasion via Down- regulation of Skp2 in pancreatic Cancer cells. Asian Pac J Cancer Prev 16(9):3805–3810CrossRefGoogle Scholar
  8. 8.
    Pihlak R, Valle JW, McNamara MG (2017) Germline mutations in pancreatic cancer and potential new therapeutic options. Oncotarget.  https://doi.org/10.18632/oncotarget.17291
  9. 9.
    Li X, Ding X, Adrian TE (2003) Arsenic trioxide induces apoptosis in pancreatic cancer cells via changes in cell cycle, caspase activation, and GADD expression. Pancreas 27(2):174–179CrossRefGoogle Scholar
  10. 10.
    Barabasi AL, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12(1):56–68.  https://doi.org/10.1038/nrg2918 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Vidal M, Cusick ME, Barabasi AL (2011) Interactome networks and human disease. Cell 144(6):986–998.  https://doi.org/10.1016/j.cell.2011.02.016 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43(Database issue):D447–D452.  https://doi.org/10.1093/nar/gku1003 CrossRefPubMedGoogle Scholar
  13. 13.
    Ruan HH, Zhang Z, Wang SY, Nickels LM, Tian L, Qiao JJ, Zhu J (2017) Tumor necrosis factor receptor-associated factor 6 (TRAF6) mediates ubiquitination-dependent STAT3 activation upon Salmonella typhimurium infection. Infect Immun 85.  https://doi.org/10.1128/iai.00081-17
  14. 14.
    Manne RK, Agrawal Y, Bargale A, Patel A, Paul D, Gupta NA, Rapole S, Seshadri V, Subramanyam D, Shetty P, Santra MK (2017) A MicroRNA/ubiquitin ligase feedback loop regulates slug-mediated invasion in breast Cancer. Neoplasia 19(6):483–495.  https://doi.org/10.1016/j.neo.2017.02.013 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Guo YY, Yi L, Zheng Y et al (2017) Ubiquitin C-terminal hydrolase L1 (UCH-L1) promotes hippocampus-dependent memory via its deubiquitinating effect on TrkB. J Neurosci 37:5978–5995.  https://doi.org/10.1523/jneurosci.3148-16.2017 CrossRefPubMedGoogle Scholar
  16. 16.
    Das A, Qian J, Tsang WY (2017) USP9X counteracts differential ubiquitination of NPHP5 by MARCH7 and BBS11 to regulate ciliogenesis. PLoS Genet 13(5):e1006791.  https://doi.org/10.1371/journal.pgen.1006791 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Wang Y, Kuramitsu Y, Baron B, Kitagawa T, Tokuda K, Akada J, Maehara SI, Maehara Y, Nakamura K (2017) PI3K inhibitor LY294002, as opposed to wortmannin, enhances AKT phosphorylation in gemcitabine-resistant pancreatic cancer cells. Int J Oncol 50(2):606–612.  https://doi.org/10.3892/ijo.2016.3804 CrossRefPubMedGoogle Scholar
  18. 18.
    Ebrahimi S, Hosseini M, Shahidsales S, Maftouh M, Ferns GA, Ghayour-Mobarhan M, Hassanian SM, Avan A (2017) Targeting the Akt/PI3K signaling pathway as a potential therapeutic strategy for the treatment of pancreatic Cancer. Curr Med Chem 24:1321–1331.  https://doi.org/10.2174/0929867324666170206142658 CrossRefPubMedGoogle Scholar
  19. 19.
    Jiao Y, Yonescu R, Offerhaus GJ et al (2014) Whole-exome sequencing of pancreatic neoplasms with acinar differentiation. J Pathol 232(4):428–435.  https://doi.org/10.1002/path.4310 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Biankin AV, Waddell N, Kassahn KS et al (2012) Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 491(7424):399–405.  https://doi.org/10.1038/nature11547 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Cao Y, Gao Z, Li L, Jiang X, Shan A, Cai J, Peng Y, Li Y, Jiang X, Huang X, Wang J, Wei Q, Qin G, Zhao J, Jin X, Liu L, Li Y, Wang W, Wang J, Ning G (2013) Whole exome sequencing of insulinoma reveals recurrent T372R mutations in YY1. Nat Commun 4:2810.  https://doi.org/10.1038/ncomms3810 CrossRefPubMedGoogle Scholar
  22. 22.
    Jiao Y, Shi C, Edil BH, de Wilde RF, Klimstra DS, Maitra A, Schulick RD, Tang LH, Wolfgang CL, Choti MA, Velculescu VE, Diaz LA, Vogelstein B, Kinzler KW, Hruban RH, Papadopoulos N (2011) DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 331(6021):1199–1203.  https://doi.org/10.1126/science.1200609 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Witkiewicz AK, McMillan EA, Balaji U et al (2015) Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat Commun 6:6744.  https://doi.org/10.1038/ncomms7744 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Bailey P, Chang DK, Nones K et al (2016) Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 531(7592):47–52.  https://doi.org/10.1038/nature16965 CrossRefPubMedGoogle Scholar
  25. 25.
    Scarpa A, Chang DK, Nones K et al (2017) Whole-genome landscape of pancreatic neuroendocrine tumours. Nature 543(7643):65–71.  https://doi.org/10.1038/nature21063 CrossRefPubMedGoogle Scholar
  26. 26.
    Yurgelun MB, Masciari S, Joshi VA, Mercado RC, Lindor NM, Gallinger S, Hopper JL, Jenkins MA, Buchanan DD, Newcomb PA, Potter JD, Haile RW, Kucherlapati R, Syngal S, Colon Cancer Family Registry (2015) Germline TP53 mutations in patients with early-onset colorectal Cancer in the Colon Cancer family registry. JAMA Oncol 1(2):214–221.  https://doi.org/10.1001/jamaoncol.2015.0197 CrossRefPubMedGoogle Scholar
  27. 27.
    Leroy B, Anderson M, Soussi T (2014) TP53 mutations in human cancer: database reassessment and prospects for the next decade. Hum Mutat 35(6):672–688.  https://doi.org/10.1002/humu.22552 CrossRefPubMedGoogle Scholar
  28. 28.
    Hu L, Zhu YT, Qi C, Zhu YJ (2009) Identification of Smyd4 as a potential tumor suppressor gene involved in breast cancer development. Cancer Res 69(9):4067–4072.  https://doi.org/10.1158/0008-5472.can-08-4097 CrossRefPubMedGoogle Scholar
  29. 29.
    Manokawinchoke J, Limjeerajarus N, Limjeerajarus C, Sastravaha P, Everts V, Pavasant P (2015) Mechanical force-induced TGFB1 increases expression of SOST/POSTN by hPDL cells. J Dent Res 94(7):983–989.  https://doi.org/10.1177/0022034515581372 CrossRefPubMedGoogle Scholar
  30. 30.
    Hull ML, Johan MZ, Hodge WL, Robertson SA, Ingman WV (2012) Host-derived TGFB1 deficiency suppresses lesion development in a mouse model of endometriosis. Am J Pathol 180(3):880–887.  https://doi.org/10.1016/j.ajpath.2011.11.013 CrossRefPubMedGoogle Scholar
  31. 31.
    Shen SJ, Zhang YH, Gu XX, Jiang SJ, Xu LJ (2017) Yangfei Kongliu formula, a compound Chinese herbal medicine, combined with cisplatin, inhibits growth of lung cancer cells through transforming growth factor-beta1 signaling pathway. J Integr Med 15(3):242–251.  https://doi.org/10.1016/s2095-4964(17)60330-3 CrossRefPubMedGoogle Scholar
  32. 32.
    Anvarian Z, Nojima H, van Kappel EC, Madl T, Spit M, Viertler M, Jordens I, Low TY, van Scherpenzeel RC, Kuper I, Richter K, Heck AJR, Boelens R, Vincent JP, Rüdiger SGD, Maurice MM (2016) Axin cancer mutants form nanoaggregates to rewire the Wnt signaling network. Nat Struct Mol Biol 23(4):324–332.  https://doi.org/10.1038/nsmb.3191 CrossRefPubMedGoogle Scholar
  33. 33.
    Wu R, Zhai Y, Fearon ER, Cho KR (2001) Diverse mechanisms of beta-catenin deregulation in ovarian endometrioid adenocarcinomas. Cancer Res 61(22):8247–8255PubMedGoogle Scholar
  34. 34.
    Chen GQ, Zhu J, Shi XG, Ni JH, Zhong HJ, Si GY, Jin XL, Tang W, Li XS, Xong SM, Shen ZX, Sun GL, Ma J, Zhang P, Zhang TD, Gazin C, Naoe T, Chen SJ, Wang ZY, Chen Z (1996) In vitro studies on cellular and molecular mechanisms of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia: As2O3 induces NB4 cell apoptosis with downregulation of Bcl-2 expression and modulation of PML-RAR alpha/PML proteins. Blood 88(3):1052–1061PubMedGoogle Scholar
  35. 35.
    Noguera NI, Pelosi E, Angelini DF et al (2017) High-dose ascorbate and arsenic trioxide selectively kill acute myeloid leukemia and acute promyelocytic leukemia blasts in vitro. Oncotarget 8(20):32550–32565.  https://doi.org/10.18632/oncotarget.15925 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    He H, An R, Hou J, Fu W (2017) Arsenic trioxide induced rhabdomyolysis, a rare but severe side effect, in an APL patient: a case report. Front Med 11(2):284–286.  https://doi.org/10.1007/s11684-017-0514-y CrossRefPubMedGoogle Scholar
  37. 37.
    Zhang HN, Yang L, Ling JY, Czajkowsky DM, Wang JF, Zhang XW, Zhou YM, Ge F, Yang MK, Xiong Q, Guo SJ, le HY, Wu SF, Yan W, Liu B, Zhu H, Chen Z, Tao SC (2015) Systematic identification of arsenic-binding proteins reveals that hexokinase-2 is inhibited by arsenic. Proc Natl Acad Sci U S A 112(49):15084–15089.  https://doi.org/10.1073/pnas.1521316112 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Cekanova M, Fernando RI, Siriwardhana N, Sukhthankar M, Parra C, Woraratphoka J, Malone C, Ström A, Baek SJ, Wade PA, Saxton AM, Donnell RM, Pestell RG, Dharmawardhane S, Wimalasena J (2015) BCL-2 family protein, BAD is down-regulated in breast cancer and inhibits cell invasion. Exp Cell Res 331(1):1–10.  https://doi.org/10.1016/j.yexcr.2014.11.016 CrossRefPubMedGoogle Scholar
  39. 39.
    Sastry KS, Al-Muftah MA, Li P et al (2014) Targeting proapoptotic protein BAD inhibits survival and self-renewal of cancer stem cells. Cell Death Differ 21(12):1936–1949.  https://doi.org/10.1038/cdd.2014.140 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Arányi Lajos Foundation 2018

Authors and Affiliations

  1. 1.Department of Laboratory Diagnostics, Changhai HospitalSecond Military Medical UniversityShanghaiChina

Personalised recommendations