Advertisement

Pathology & Oncology Research

, Volume 25, Issue 2, pp 625–633 | Cite as

Metastatic Spread from Abdominal Tumor Cells to Parathymic Lymph Nodes

  • Gábor Király
  • Zoltán Hargitai
  • Ilona Kovács
  • Gábor Szemán-Nagy
  • István JuhászEmail author
  • Gáspár BánfalviEmail author
Original Article
  • 67 Downloads

Abstract

Metastatic studies on rats showed that after subrenal implantation of tumor cells under the capsule of the kidney or subhepatic implantation under Glisson’s capsule of the liver generated primary tumors in these organs. It was assumed that tumor cells that escaped through the disrupted peripheral blood vessels of primary tumors entered the peritoneal cavity, crossed the diaphragm, and appeared in the thoracal, primarily in the parathymic lymph nodes. This explanation did not answer the question whether distant lymph nodes were reached via the blood stream from the primary tumor or through the thoracal lymphatic vessels. In this work, we investigated the metastatic pathway in C3H/HeJ mice, after direct intraperitoneal administration of murine SCC VII cells bypassing the hematogenic spread of tumor cells. The direct pathway was also mimicked by intraperitoneal injection of Pelican Ink colloidal particles, which appeared in the parathymic lymph nodes, similarly to the tumor cells that caused metastasis in the parathymic lymph nodes and in the thymic tissue. The murine peritoneal-parathymic lymph node route indicates a general mechanism of tumor progression from the abdominal effusion. This pathway starts with the growth of abdominal tumors, continues as thoracal metastasis in parathymic lymph nodes and may proceed as mammary lymph node metastasis.

Keywords

Carcinoma cell line Murine metastasis model Parathymic lymph node Colloidal ink 

Notes

Acknowledgements

The SCC VII tumor cell line was kindly provided by Prof. Reinhard Zeidler, University of Munich, Helmholtz Zentrum. The research was supported by the EU and co-financed by the European Regional Development Fund under the GINOP-2.3.2-15-2016-00005 to IJ.

Authors’ Contributions

Conception and design: G. Banfalvi, G. Kiraly, G. Nagy, I. Juhasz.

Collection and assembly of data: G. Kiraly, G. Nagy, Z. Hargitai, I. Kovacs.

Data analysis and interpretation: G. Banfalvi, G. Kiraly, G. Nagy, I. Juhasz.

Manuscript writing: G. Banfalvi, G. Kiraly, G. Nagy, I. Juhasz.

Final approval of manuscript: I. Juhasz, G. Banfalvi, G. Nagy.

Accountable for all aspects of the work: G. Banfalvi, I. Juhasz, G. Nagy.

References

  1. 1.
    Trencsenyi G, Kertai P, Somogyi C, Nagy G, Dombradi Z, Gacsi M, Banfalvi G (2007) Chemically induced carcinogenesis affecting chromatin structure in rat hepatocarcinoma cells. DNA Cell Biol 26:649–655 http://online.liebertpub.com/doi/abs/10.1089/dna.2007.0587 CrossRefGoogle Scholar
  2. 2.
    Trencsenyi G, Kertai P, Bako F, Hunyadi J, Marian T, Hargitai Z, Pocsi I, Muranyi E, Hornyak L, Banfalvi G (2009) Renal capsule-Parathymic lymph node complex: a new in vivo metastatic model in rats. Anticancer Res 29:2121–2126 http://ar.iiarjournals.org/content/29/6/2121.long Google Scholar
  3. 3.
    Cui ZY, Ahn JS, Lee JY, Kim WS, Lim HY, Jeon HJ, Suh SW, Kim JH, Kong WH, Kang JM, Nam DH, Park K (2006) Mouse orthotopic lung cancer model induced by PC14PE6. Cancer Res Treat 38:234–239 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2741646/ CrossRefGoogle Scholar
  4. 4.
    Paget S (1989) The distribution of secondary growths in cancer of the breast. Lancet 133(3421):571–573 https://www.ncbi.nlm.nih.gov/pubmed/2673568 CrossRefGoogle Scholar
  5. 5.
    Hoffman RM (1999) Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: a bridge to the clinic. Investig New Drugs 17:343–359 https://www.ncbi.nlm.nih.gov/pubmed?term=orthotopic%20metastatic%20mouse%20model%20for%20anticancer%20drug%20discovery%20and%20evaluation%20a%20bridge%20to%20the%20clinic.&cmd=correctspelling CrossRefGoogle Scholar
  6. 6.
    Rozsa D, Trencsenyi G, Kertai P, Marian T, Nagy G, Banfalvi G (2009) Lymphatic spread of mesenchymal renal tumor to metastatic parathymic lymph nodes in rat. Histol Histopathol 24:1367–1379 http://www.hh.um.es/Abstracts/Vol_24/24_11/24_11_1367.htm Google Scholar
  7. 7.
    Marco AJ, Domingo M, Ruberte J, Carretero A, Briones V, Dominguez L (1992) Lymphatic drainage of Listeria inonocytogenes and Indian ink inoculated in the peritoneal cavity of the mouse. Lab Anim 26:200–205 http://journals.sagepub.com/doi/abs/10.1258/002367792780740549?url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org&rfr_dat=cr_pub%3Dpubmed& CrossRefGoogle Scholar
  8. 8.
    Banfalvi G (2012a) Role of parathymic lymph nodes in metastatic tumor development. Cancer Metastasis Rev 31:89–97 https://link.springer.com/article/10.1007%2Fs10555-011-9331-y CrossRefGoogle Scholar
  9. 9.
    Steer HW, Lewis DA (1983) Peritoneal cell responses to acute gastro-intestinal inflammation. J Pathol 140:237–253 http://onlinelibrary.wiley.com/doi/10.1002/path.1711400306/full CrossRefGoogle Scholar
  10. 10.
    Jian J, Liu C, Gong Y, Su L, Zhang B, Wang Z, Wang D, Zhou Y, Xu F, Li P, Zheng Y, Song L, Zhou X (2014) India ink incorporated multifunctional phase-transition Nanodroplets for photoacoustic/ultrasound dual-modality imaging and photoacoustic effect based tumor therapy. Theranostics 4(10):1026–1038 http://www.thno.org/v04p1026.htm CrossRefGoogle Scholar
  11. 11.
    Rafferty P, Egenolf D, Brosnan K, Makropoulos D, Jordan J, Meshaw K, Walker M, Volk A, Bugelski PJ (2012) Immunotoxicologic effects of cyclosporine on tumor progression in models of squamous cell carcinoma and B-cell lymphoma in C3H mice. J Immunotoxicol 9:43–55 http://www.tandfonline.com/doi/full/10.3109/1547691X.2011.614646 CrossRefGoogle Scholar
  12. 12.
    Moore A, Sergeyev N, Bredow S, Weissleder R (1998) A model system to quantitate tumor burden in locoregional lymph nodes during cancer spread. Invasion Metastasis 18:192–197 https://www.ncbi.nlm.nih.gov/pubmed/10640905 CrossRefGoogle Scholar
  13. 13.
    Morris B, Courtice FC (1977) Cells and immunoglobulins in lymph. Lymphology 10:62–69 https://www.ncbi.nlm.nih.gov/pubmed/329011 Google Scholar
  14. 14.
    Miller JF (1963) Role of the thymus in immunity. Brit Med J 24 2(5355):459–464. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1874012/ CrossRefGoogle Scholar
  15. 15.
    Bonney WM, Battenberg JD (1967) Transthoracic thymectomy in rats. Transplantation 5(3):544–546. https://www.ncbi.nlm.nih.gov/pubmed/?term=Bonney+WM%2C+Battenberg+JD.+Transthoracic+thymectomy+in+rats CrossRefGoogle Scholar
  16. 16.
    Blau JN, Gaugas JM (1968) Parathymic lymph nodes in rats and mice. Immunology 14:763–765 https://www.ncbi.nlm.nih.gov/pubmed/?term=Blau+JN%2C+Gaugas+JM.+Parathymic+lymph+nodes+in+rats+and+mice Google Scholar
  17. 17.
    Tanegashima A, Yamashita A, Yamamoto H, Fukunaga T (1999) Human parathymic lymph node: morphological and functional significance. Immunology 97(2):301–308 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2326821/ CrossRefGoogle Scholar
  18. 18.
    Severeanu G (1909) Die Lymphgefäße der Thymus. Arch Anat Entw Gesch 93Google Scholar
  19. 19.
    Siegler R (1669-1678) Rich MA (1963) unilateral histogenesis of AKR thymic lymphoma. Cancer Res Volume 23:10(1) http://cancerres.aacrjournals.org/content/23/10_Part_1/1669.long
  20. 20.
    Workman P, Twentyman P, Balkwill F (1988) United Kingdom co-ordinating committee on Cancer research (UKCCCR) guidelines for the welfare of animals in experimental neoplasia (second edition). Br J Cancer 77(1):1–10 https://ciepal-azur.unice.fr/Oncology%20animal%20guides.pdf Google Scholar
  21. 21.
    Kanazawa H, Rapacchietta D, Kallman RF (1988) Schedule-dependent therapeutic gain from the combination of fractionated irradiation and cis-diamminedichloroplatinum (II) in C3H/km mouse model systems. Cancer Res 48:3158–3164 http://cancerres.aacrjournals.org/content/48/11/3158.short Google Scholar
  22. 22.
    Dunn TB (1954) Normal and pathologic anatomy of the reticular tissue in laboratory mice, with a classification and discussion of neoplasms. J Natl Cancer Inst 14(6):1281–1433 https://www.ncbi.nlm.nih.gov/pubmed/13233863 Google Scholar
  23. 23.
    Glomset DA (1938) The incidence of metastasis of malignant tumors to the adrenals. Am J Cancer 32:57–61 http://cancerres.aacrjournals.org/content/amjcancer/32/1/57.full.pdf CrossRefGoogle Scholar
  24. 24.
    Trencsenyi G, Marian T, Bako F, Emri M, Nagy G, Kertai P, Banfalvi G (2014a) Metastatic hepatocarcinoma he/De tumor model in rat. J Cancer 5(7):548–558.  https://doi.org/10.7150/jca.9315 CrossRefGoogle Scholar
  25. 25.
    Trencsenyi G, Nagy G, Kahlik B, Nemeth E, Kertai P, Kiss A, Banfalvi G (2014b) Lymphoid metastasis of rat My2/De leukemia. Leuk Res 38:586–593.  https://doi.org/10.1016/j.leukres.2014.02.006 CrossRefGoogle Scholar
  26. 26.
    Pitt ML, Anderson AO (1988) Direct transdiaphragmatic traffic of peritoneal macrophages to the lung. Adv Exp Med Biol 237:627–632 https://link.springer.com/chapter/10.1007/978-1-4684-5535-9_95 CrossRefGoogle Scholar
  27. 27.
    MacCallum WG (1903) On the mechanism of absorption of granular materials from the peritoneum. Bull Johns Hopkins Hosp 14:105–115Google Scholar
  28. 28.
    Olin T, Saldeen T (1964) The lymphatic pathways from the peritoneal cavity: a lymphangiographic study in the rat. Cancer Res 24:1700–1711 http://cancerres.aacrjournals.org/content/24/10/1700.long Google Scholar
  29. 29.
    Banfalvi G (2012b) Metastatic view of breast cancer. Cancer Metastasis Rev 31:815–822.  https://doi.org/10.1007/s10555-012-9392-6 CrossRefGoogle Scholar
  30. 30.
    Gray H, Pickering PT, Howden R (1974) Gray’s anatomy. Philadelphia Courage BooksGoogle Scholar
  31. 31.
    Handley RS, Thackray AC (1954) Invasion of the internal mammary glands in carcinoma of the breast. Br J Cancer 1:15–20CrossRefGoogle Scholar

Copyright information

© Arányi Lajos Foundation 2018

Authors and Affiliations

  • Gábor Király
    • 1
    • 2
  • Zoltán Hargitai
    • 3
  • Ilona Kovács
    • 3
  • Gábor Szemán-Nagy
    • 1
  • István Juhász
    • 2
    • 4
    Email author
  • Gáspár Bánfalvi
    • 1
    Email author
  1. 1.Department of Biotechnology and MicrobiologyUniversity of DebrecenDebrecenHungary
  2. 2.Department of Surgery and Operative TechniquesUniversity of DebrecenDebrecenHungary
  3. 3.Department of Pathology, Kenézy HospitalUniversity of DebrecenDebrecenHungary
  4. 4.Department of DermatologyUniversity of DebrecenDebrecenHungary

Personalised recommendations