Systems Oncology: Bridging Pancreatic and Castrate Resistant Prostate Cancer
Abstract
Large investments by pharmaceutical companies in the development of new antineoplastic drugs have not been resulting in adequate advances of new therapies. Despite the introduction of new methods, technologies, translational medicine and bioinformatics, the usage of collected knowledge is unsatisfactory. In this paper, using examples of pancreatic ductal adenocarcinoma (PaC) and castrate-resistant prostate cancer (CRPC), we proposed a concept showing that, in order to improve applicability of current knowledge in oncology, the re-clustering of clinical and scientific data is crucial. Such an approach, based on systems oncology, would include bridging of data on biomarkers and pathways between different cancer types. Proposed concept would introduce a new matrix, which enables combining of already approved therapies between cancer types. Paper provides a (a) detailed analysis of similarities in mechanisms of etiology and progression between PaC and CRPC, (b) diabetes as common hallmark of both cancer types and (c) knowledge gaps and directions of future investigations. Proposed horizontal and vertical matrix in cancer profiling has potency to improve current antineoplastic therapy efficacy. Systems biology map using Systems Biology Graphical Notation Language is used for summarizing complex interactions and similarities of mechanisms in biology of PaC and CRPC.
Keywords
Pancreatic cancer Castrate resistant prostate cancer Cancer marker Systems oncology Cancer profilingNotes
Acknowledgements
Study was funded by institutional funds of Institute for Medical Research and Occupational Health through Croatian Ministry of Science and Education.
Compliance with Ethical Standards
Conflict of Interest
Authors declare no conflict of interest.
References
- 1.Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global Cancer statistics CA. Cancer J Clin 61:69–90CrossRefGoogle Scholar
- 2.Xiao AY, Tan ML, Wu LM, Asrani VM, Windsor JA, Yadav D, Petrov MS (2016) Global incidence and mortality of pancreatic diseases: a systematic review, meta-analysis, and meta-regression of population-based cohort studies. Lancet Gastroenterol Hepatol 1(1):45–55CrossRefPubMedGoogle Scholar
- 3.Hirst CJ, Cabrera C, Kirby M (2012) Epidemiology of castration resistant prostate cancer: a longitudinal analysis using a UK primary care database. Cancer Epidemiol 36(6):e349–e353CrossRefPubMedGoogle Scholar
- 4.Steinkamp MP, O'Mahony OA, Brogley M, Rehman H, Lapensee EW, Dhanasekaran S, Hofer MD, Kuefer R, Chinnaiyan A, Rubin MA, Pienta KJ, Robins DM (2009) Treatment-dependent androgen receptor mutations in prostate cancer exploit multiple mechanisms to evade therapy. Cancer Res 69(10):4434–4442CrossRefPubMedPubMedCentralGoogle Scholar
- 5.So A, Gleave M, Hurtado-Col A, Nelson C (2005) Mechanisms of the development of androgen independence in prostate cancer. World J Urol 23(1):1–9CrossRefPubMedGoogle Scholar
- 6.Mostaghel EA, Page ST, Lin DW, Fazli L, Coleman IM, True LD, Knudsen B, Hess DL, Nelson CC, Matsumoto AM, Bremner WJ, Gleave ME, Nelson PS (2007) Intraprostatic androgens and androgen-regulated gene expression persist after testosterone suppression: therapeutic implications for castration-resistant prostate cancer. Cancer Res 67(10):5033–5041CrossRefPubMedGoogle Scholar
- 7.Montgomery RB, Mostaghel EA, Vessella R, Hess DL, Kalhorn TF, Higano CS, True LD, Nelson PS (2008) Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res 68(11):4447–4454CrossRefPubMedPubMedCentralGoogle Scholar
- 8.Locke JA, Guns ES, Lubik AA, Adomat HH, Hendy SC, Wood CA, Ettinger SL, Gleave ME, Nelson CC (2008) Androgen levels increase by intratumoral de novo steroidogenesis during progression of castration-resistant prostate cancer. Cancer Res 68(15):6407–6415CrossRefPubMedGoogle Scholar
- 9.Leon CG, Locke JA, Adomat HH, Etinger SL, Twiddy AL, Neumann RD, Nelson CC, Guns ES, Wasan KM (2010) Alterations in cholesterol regulation contribute to the production of intratumoral androgens during progression to castration-resistant prostate cancer in a mouse xenograft model. Prostate 70(4):390–400PubMedGoogle Scholar
- 10.Kolodecik T, Shugrue C, Ashat M, Thrower EC (2014) Risk factors for pancreatic cancer: underlying mechanisms and potential targets. Front Physiol 4:415CrossRefPubMedPubMedCentralGoogle Scholar
- 11.Bardeesy N, DePinho RA (2002) Pancreatic cancer biology and genetics. Nat Rev Cancer 2:897–909CrossRefPubMedGoogle Scholar
- 12.Polireddy K, Chen Q (2016) Cancer of the pancreas: molecular pathways and current advancement in treatment. J Cancer 7(11):1497–1514CrossRefPubMedPubMedCentralGoogle Scholar
- 13.Becker AE, Hernandez YG, Frucht H, Lucas AL (2014) Pancreatic ductal adenocarcinoma: risk factors, screening, and early detection. World J Gastroenterol 20(32):11182–11198CrossRefPubMedPubMedCentralGoogle Scholar
- 14.Rhee H, Gunter JH, Heathcote P, Ho K, Stricker P, Corcoran NM, Nelson CC (2015) Adverse effects of androgen-deprivation therapy in prostate cancer and their management. BJU Int 5(115 Supplement):3–13CrossRefGoogle Scholar
- 15.Vermeulen A, Kaufman JM, Goemaere S, van Pottelberg I (2002) Estradiol in elderly men. Aging Male 5:98–102CrossRefPubMedGoogle Scholar
- 16.Navarro Silvera SA, Miller AB, Rohan TE (2005) Hormonal and reproductive factors and pancreatic cancer risk: a prospective cohort study. Pancreas 30(4):369–374CrossRefPubMedGoogle Scholar
- 17.Sun F, Zhang ZW, Tan EM, Lim ZL, Li Y, Wang XC, Chua SE, Li J, Cheung E, Yong EL (2016) Icaritin suppresses development of neuroendocrine differentiation of prostate cancer through inhibition of IL-6/STAT3 and aurora kinase a pathways in TRAMP mice. Carcinogenesis 37(7):701–711CrossRefPubMedGoogle Scholar
- 18.Kovvali G (2014) Systems oncology: a new paradigm in cancer research. J Carcinog 13:6CrossRefPubMedPubMedCentralGoogle Scholar
- 19.Chung WS, Stainier DY (2008) Intra-endodermal interactions are required for pancreatic beta cell induction. Dev Cell 14(4):582–593CrossRefPubMedPubMedCentralGoogle Scholar
- 20.Habener JF, Kemp DM, Thomas MK (2005) Minireview: transcriptional regulation in pancreatic development. Endocrinology 146(3):1025–1034CrossRefPubMedGoogle Scholar
- 21.Kim SK, MacDonald RJ (2002) Signaling and transcriptional control of pancreatic organogenesis. Curr Opin Genet Dev 12(5):540–547CrossRefPubMedGoogle Scholar
- 22.Sugiyama T, Benitez CM, Ghodasara A, Liu L, McLean GW, Lee J, Blauwkamp TA, Nusse R, Wright CV, Gu G, Kim SK (2013) Reconstituting pancreas development from purified progenitor cells reveals genes essential for islet differentiation. Proc Natl Acad Sci U S A 110(31):12691–12696CrossRefPubMedPubMedCentralGoogle Scholar
- 23.Kim MS, Lee DY (2015) Insulin-like growth factor (IGF)-I and IGF binding proteins axis in diabetes mellitus. Ann Pediatr Endocrinol Metab 20(2):69–73CrossRefPubMedPubMedCentralGoogle Scholar
- 24.Murtaugh LC (2008) The what, where, when and how of Wnt/β-catenin signaling in pancreas development. Organogenesis 4(2):81–86CrossRefPubMedPubMedCentralGoogle Scholar
- 25.Lee SH, Johnson DT, Luong R, Yu EJ, Cunha GR, Nusse R, Sun Z (2015) Wnt/β-catenin-responsive cells in prostatic development and regeneration. Stem Cells 33(11):3356–3367CrossRefPubMedPubMedCentralGoogle Scholar
- 26.Prins GS, Putz O (2008) Review molecular signaling pathways that regulate prostate gland development. Differentiation 76(6):641–659CrossRefPubMedPubMedCentralGoogle Scholar
- 27.Ma F, Ye H, He HH, Gerrin SJ, Chen S, Tanenbaum BA, Cai C, Sowalsky AG, He L, Wang H, Balk SP, Yuan X (2016) SOX9 drives WNT pathway activation in prostate cancer. J Clin Invest 126(5):1745–1758CrossRefPubMedPubMedCentralGoogle Scholar
- 28.Su Q, Xin L (2016) Notch signaling in prostate cancer: refining a therapeutic opportunity. Histol Histopathol 31(2):149–157PubMedGoogle Scholar
- 29.Gajula RP, Chettiar ST, Williams RD, Nugent K, Kato Y, Wang H, Malek R, Taparra K, Cades J, Annadanam A, Yoon AR, Fertig E, Firulli BA, Mazzacurati L, Burns TF, Firulli AB, An SS, Tran PT (2015) Structure-function studies of the bHLH phosphorylation domain of TWIST1 in prostate cancer cells. Neoplasia 17(1):16–31CrossRefPubMedPubMedCentralGoogle Scholar
- 30.Zhu G, Zhau HE, He H, Zhang L, Shehata B, Wang X, Cerwinka WH, Elmore J, He D (2007) Sonic and desert hedgehog signaling in human fetal prostate development. Prostate 67(6):674–684CrossRefPubMedGoogle Scholar
- 31.Jo A, Denduluri S, Zhang B, Wang Z, Yin L, Yan Z, Kang R, Shi LL, Mok J, Lee MJ, Haydon RC (2014) The versatile functions of Sox9 in development, stem cells, and human diseases. Genes Diseases 1(2):149–161CrossRefPubMedPubMedCentralGoogle Scholar
- 32.Yu M, Gipp J, Yoon JW, Iannaccone P, Walterhouse D, Bushman W (2009) Sonic hedgehog-responsive genes in the fetal prostate. J Biol Chem 284(9):5620–5629CrossRefPubMedPubMedCentralGoogle Scholar
- 33.Verras M, Brown J, Li X et al (2004) Wnt3a growth factor induces androgen receptor-mediated transcription and enhances cell growth in human prostate cancer cells. Cancer Res 64(24):8860–8866CrossRefPubMedGoogle Scholar
- 34.Nakamoto M, Hisaoka M (2016) Clinicopathological implications of wingless/int1 (WNT) signaling pathway in pancreatic ductal adenocarcinoma. J UOEH 38(1):1–8CrossRefPubMedGoogle Scholar
- 35.Terris B, Cavard C (2014) Diagnosis and molecular aspects of solid- pseudopapillary neoplasms of the pancreas. Semin Diagn Pathol 31(6):484–490CrossRefPubMedGoogle Scholar
- 36.Corbishley TP, Iqbal MJ, Wilkinson ML et al (1986) Androgen receptor in human normal and malignant pancreatic tissue and cell lines. Cancer 57(10):1992–1995CrossRefPubMedGoogle Scholar
- 37.Glass JP, Parasher G, Arias-Pulido H et al (2011) Mesothelin and GPR30 staining among a spectrum of pancreatic epithelial neoplasms. Int J Surg Pathol 19(5):588–596CrossRefPubMedGoogle Scholar
- 38.Yeh S, Miyamoto H, Shima H et al (1998) From estrogen to androgen receptor: a new pathway for sex hormones in prostate. Proc Natl Acad Sci U S A 95(10):5527–5532CrossRefPubMedPubMedCentralGoogle Scholar
- 39.Zhang Y, Coogan PF, Palmer JR et al (2010) A case–control study of reproductive factors, female hormone use, and risk of pancreatic cancer. Cancer Causes Control 21(3):473–478CrossRefPubMedGoogle Scholar
- 40.Jansa R, Prezelj J, Kocijancic A et al (1996) Androstanediol glucuronide in patients with pancreatic cancer and in those with chronic pancreatitis. Horm Metab Res 28(8):381–383CrossRefPubMedGoogle Scholar
- 41.Hsieh CL, Fei T, Chen Y et al (2014) RNAs participate in androgen receptor-driven looping that selectively enhances gene activation. Proc Natl Acad Sci U S A 111(20):7319–7324CrossRefPubMedPubMedCentralGoogle Scholar
- 42.Dong Y, Matigian N et al (2008) Tissue-specific promoter utilisation of the kallikrein-related peptidase genes, KLK5 and KLK7, and cellular localisation of the encoded proteins suggest roles in exocrine pancreatic function. Biol Chem 389:99–109CrossRefPubMedGoogle Scholar
- 43.Iakovlev V, Siegel ER, Tsao MS et al (2012) Expression of kallikrein-related peptidase 7 predicts poor prognosis in patients with unresectable pancreatic ductal adenocarcinoma. Cancer Epidemiol Biomark Prev 21(7):1135–1142CrossRefGoogle Scholar
- 44.Sandhu V, Wedge DC (2016) The genomic landscape of pancreatic and Periampullary adenocarcinoma. Cancer Res 76(17):5092–5102CrossRefPubMedGoogle Scholar
- 45.Parikh H, Wang Z, Pettigrew KA et al (2011) Fine mapping the KLK3 locus on chromosome 19q13.33 associated with prostate cancer susceptibility and PSA levels. Hum Genet 129(6):675–685CrossRefPubMedPubMedCentralGoogle Scholar
- 46.Raju I, Kaushal GP, Haun RS (2016) Epigenetic regulation of KLK7 gene expression in pancreatic and cervical cancer cells. Biol Chem 397(11):1135–1146CrossRefPubMedGoogle Scholar
- 47.Konduri S, Schwarz MA, Cafasso D et al (2007) Androgen receptor blockade in experimental combination therapy of pancreatic cancer. J Surg Res 142(2):378–386CrossRefPubMedGoogle Scholar
- 48.Qu Y, Dai B, Ye D et al (2015) Constitutively active AR-V7 plays an essential role in the development and progression of castration-resistant prostate cancer. Sci Rep 5:7654CrossRefPubMedPubMedCentralGoogle Scholar
- 49.Zhang Z, Chen L, Wang H et al (2015) Inhibition of Plk1 represses androgen signaling pathway in castration-resistant prostate cancer. Cell Cycle 14(13):2142–2148CrossRefPubMedPubMedCentralGoogle Scholar
- 50.Mao Y, Xi L, Li Q et al (2016) Regulation of cell apoptosis and proliferation in pancreatic cancer through PI3K/Akt pathway via polo-like kinase 1. Oncol Rep 36(1):49–56CrossRefPubMedPubMedCentralGoogle Scholar
- 51.Song B, Liu XS, Rice SJ et al (2013) Plk1 phosphorylation of orc2 and hbo1 contributes to gemcitabine resistance in pancreatic cancer. Mol Cancer Ther 12(1):58–68CrossRefPubMedGoogle Scholar
- 52.Shao C, Ahmad N, Hodges K et al (2015) Inhibition of polo-like kinase 1 (Plk1) enhances the antineoplastic activity of metformin in prostate Cancer. J Biol Chem 290(4):2024–2033CrossRefPubMedGoogle Scholar
- 53.Sharifi N (2012) The 5α-androstanedione pathway to dihydrotestosterone in castration-resistant prostate cancer. J Investig Med 60(2). https://doi.org/10.2310/JIM.0b013e31823874a4 CrossRefPubMedGoogle Scholar
- 54.Fernández-del Castillo C, Robles-Díaz G et al (1990) Pancreatic cancer and androgen metabolism: high androstenedione and low testosterone serum levels. Pancreas 5(5):515–518CrossRefPubMedGoogle Scholar
- 55.Chang TC, Lin H, Rogers KA et al (2013) Expression of aldo-keto reductase family 1 member C3 (AKR1C3) in neuroendocrine tumors & adenocarcinomas of pancreas, gastrointestinal tract, and lung. Int J Clin Exp Pathol 6(11):2419–2429PubMedPubMedCentralGoogle Scholar
- 56.Zhu X, Leav I, Leung YK et al (2004) Dynamic regulation of estrogen receptor-β expression by DNA methylation during prostate cancer development and metastasis. Am J Pathol 164:2003–2012CrossRefPubMedPubMedCentralGoogle Scholar
- 57.Yeh TS, Jan YY, Chiu CT et al (2002) Characterisation of oestrogen receptor, progesterone receptor, trefoil factor 1, and epidermal growth factor and its receptor in pancreatic cystic neoplasms and pancreatic ductal adenocarcinoma. Gut 51(5):712–716CrossRefPubMedPubMedCentralGoogle Scholar
- 58.Di Zazzo E, Galasso G et al (2016) Prostate cancer stem cells: the role of androgen and estrogen receptors. Oncotarget 7(1):193–208CrossRefPubMedGoogle Scholar
- 59.Sinha et al (2016) Concurrent androgen and estrogen ablation and inhibition of steroid biosynthetic enzyme treatment for castration-resistant prostate Cancer. Anticancer Res 36(8):3847–3854Google Scholar
- 60.Kanda T, Jiang X, Yokosuka O (2014) Androgen receptor signaling in hepatocellular carcinoma and pancreatic cancers. World J Gastroenterol 20(28):9229–9236PubMedPubMedCentralGoogle Scholar
- 61.Culig Z, Pencik J, Merkel O et al (2016) Breaking a paradigm: IL-6/STAT3 signaling suppresses metastatic prostate cancer upon ARF expression. Mol Cell Oncol 3(2):e1090048CrossRefPubMedPubMedCentralGoogle Scholar
- 62.Matei DV, Renne G, Pimentel M et al (2012) Neuroendocrine differentiation in castration-resistant prostate cancer: a systematic diagnostic attempt. Clin Genitourin Cancer 10(3):164–173CrossRefPubMedGoogle Scholar
- 63.Parimi V, Goyal R, Poropatich K et al (2014) Neuroendocrine differentiation of prostate cancer: a review. Am J Clin Exp Urol 2(4):273–285PubMedPubMedCentralGoogle Scholar
- 64.Buchler P, Gukovskaya AS, Mouria M et al (2003) Prevention of metastatic pancreatic cancer growth in vivo by induction of apoptosis with genistein, a naturally occurring is flavonoid. Pancreas 26(3):264–273CrossRefPubMedGoogle Scholar
- 65.Ma HP, Ming LG, Ge BF et al (2011) Icariin is more potent than genistein in promoting osteoblast differentiation and mineralization in vitro. J Cell Biochem 112(3):916–923CrossRefPubMedGoogle Scholar
- 66.Chun JY, Nadiminty N, Dutt S et al (2009) Interleukin-6 regulates androgen synthesis in prostate Cancer cells. Clin Cancer Res 15(15):4815–4822CrossRefPubMedPubMedCentralGoogle Scholar
- 67.Rojas A, Liu G, Coleman I et al (2011) IL-6 promotes prostate tumorigenesis and progression through autocrine cross-activation of IGF-IR. Oncogene 30(20):2345–2355CrossRefPubMedPubMedCentralGoogle Scholar
- 68.Chandrasekar T, Yang JC, Gao AC et al (2015) Evans CP. Mechanisms of resistance in castration-resistant prostate cancer (CRPC). Transl Androl Urol 4(3):365–380PubMedPubMedCentralGoogle Scholar
- 69.Ono H, Basson MD, Ito H (2016) P300 inhibition enhances gemcitabine-induced apoptosis of pancreatic cancer. Oncotarget 7(32):51301–51310CrossRefPubMedPubMedCentralGoogle Scholar
- 70.Paladino D, Yue P, Furuya H et al (2016) A novel nuclear Src and p300 signaling axis controls migratory and invasive behavior in pancreatic cancer. Oncotarget 7(6):7253–7267CrossRefPubMedGoogle Scholar
- 71.Muniraj T, Chari ST (2012) Diabetes and pancreatic cancer. Minerva Gastroenterol Dietol 58(4):331–345PubMedPubMedCentralGoogle Scholar
- 72.Barnard RJ, Aronson WJ, Tymchuk CN et al (2002) Prostate cancer: another aspect of the insulin-resistance syndrome? Obes Rev 3(4):303–308CrossRefPubMedGoogle Scholar
- 73.Shevach J, Gallagher EJ, Kochukoshy T et al (2015) Concurrent diabetes mellitus may negatively influence clinical progression and response to androgen deprivation therapy in patients with advanced prostate. Cancer Front Oncol 5:129PubMedGoogle Scholar
- 74.Daka B, Rosen T, Jansson PA et al (2012) Inverse association between serum insulin and sex hormone-binding globulin in a population survey in Sweden. Endocr Connect 2(1):18–22CrossRefPubMedPubMedCentralGoogle Scholar
- 75.Monteiro C, Sousa MV, Ribeiro R et al (2013) Genetic variants in AR and SHBG and resistance to hormonal castration in prostate cancer. Med Oncol 30(1):490CrossRefPubMedGoogle Scholar
- 76.Chuu CP, Kokontis JM, Hiipakka RA et al (2011) Androgens as therapy for androgen receptor-positive castration-resistant prostate cancer. J Biomed Sci 23:18–63Google Scholar
- 77.Mayer MJ, Klotz LH, Venkateswaran V (2015) Metformin and prostate cancer stem cells: a novel therapeutic target. Prostate Cancer Prostatic Dis 18:303–309CrossRefPubMedGoogle Scholar
- 78.Duan W, Chen K et al (2017) Desmoplasia suppression by metformin-mediated AMPK activation inhibits pancreatic cancer progression. Cancer Lett 385:225–233CrossRefPubMedGoogle Scholar
- 79.Schiewer MJ, Knudsen KEAM (2014) Ped up to treat prostate cancer: novel AMPK activators emerge for cancer therapy. EMBO Mol Med 6(4):439–441PubMedPubMedCentralGoogle Scholar
- 80.Ko AH, Wang F, Holly EA (2007) Pancreatic cancer and medical history in a population-based case-control study in the San Francisco Bay Area. California. Cancer Causes Control 18(8):809–819CrossRefPubMedGoogle Scholar
- 81.Sarosiek K, Gandhi AV, Saxena S, Kang CY, Chipitsyna GI, Yeo CJ, Arafat HA (2016) Hypothyroidism in pancreatic cancer: role of exogenous thyroid hormone in tumor invasion-preliminary observations. J Thyroid Res 2016:2454989. https://doi.org/10.1155/2016/2454989 CrossRefGoogle Scholar
- 82.Morote J, Esquena S, Orsola A et al (2005) Effect of androgen deprivation therapy in the thyroid function test of patients with prostate cancer. Anti-Cancer Drugs 16(8):863–866CrossRefPubMedGoogle Scholar
- 83.Heidegger I, Nagele U, Pircher A et al (2014) Latent hypothyreosis as a clinical biomarker for therapy response under abiraterone acetate therapy. Anticancer Res 34(1):307–311PubMedGoogle Scholar
- 84.Yip YL, Novothy J, Edwards M et al (2003) Structural analysis of the erbb-2 receptor using monoclonal antibodies: implications for receptor signaling. Int J Cancer 104:303–309CrossRefPubMedGoogle Scholar
- 85.Craft N, Shostak Y, Carey M et al (1999) A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nat Med 5:280–285CrossRefPubMedGoogle Scholar
- 86.Choi HJ, Hong JK, Sung SY et al (2007) Expression of c-erbB-2 and Cyclooxygenase-2 in pancreatic ductal adenocarcinoma. Korean J Pathol 41:171–175Google Scholar
- 87.Hemi R, Paz K, Wertheim N et al (2002) Transactivation of ErbB2 and ErbB3 by tumor necrosis factor-alpha and anisomycin leads to impaired insulin signaling through serine/threonine phosphorylation of IRS proteins. J Biol Chem 277(11):8961–8969CrossRefPubMedGoogle Scholar
- 88.Komoto M, Nakata B, Amano R et al (2009) HER2 overexpression correlates with survival after curative resection of pancreatic cancer. Cancer Sci 100(7):1243–1247CrossRefPubMedGoogle Scholar
- 89.Murray NP, Reyes E, Fuentealba C et al (2015) Possible role of HER-2 in the progression of prostate Cancer from primary tumor to androgen independence. Asian Pac J Cancer Prev 16(15):6615–6619CrossRefPubMedGoogle Scholar
- 90.Fyssas I, Syrigos KN, Konstandoulakis MM et al (1997) Sex hormone levels in the serum of patients with pancreatic adenocarcinoma. Horm Metab Res 29(3):115–118CrossRefPubMedGoogle Scholar
- 91.Robles-Diaz G, Duarte-Rojo A (2001) Pancreas: a sex steroid-dependent tissue. Isr Med Assoc J 3(5):364–368PubMedGoogle Scholar
- 92.Hoare D, Skinner TA, Black A et al (2015) Serum follicle-stimulating hormone levels predict time to development of castration-resistant prostate cancer. Can Urol Assoc J 9(3–4):122–127PubMedPubMedCentralGoogle Scholar
- 93.Pinthus JH (2015) Follicle-stimulating hormone: a potential surrogate marker for androgen deprivation therapy oncological and systemic effects. Can Urol Assoc J 9(3–4):E226–E227CrossRefPubMedPubMedCentralGoogle Scholar
- 94.Lepor H, Neal D, Shore ND (2012) LHRH agonists for the treatment of prostate Cancer: 2012. Rev Urol 14(1–2):1–12PubMedPubMedCentralGoogle Scholar
- 95.Bernardo GM, Keri RA (2012) FOXA1: a transcription factor with parallel functions in development and cancer. Biosci Rep 32(2):113–130CrossRefPubMedGoogle Scholar
- 96.Jin HJ, Zhao JC, Wu L et al (2014) Cooperativity and equilibrium with FOXA1 define the androgen receptor transcritptional program. Nature Comm 5:3972CrossRefGoogle Scholar
- 97.Wang J, Nikhil K, Viccaro K, Chang L, Jacobsen M, Sandusky G, Shah K (2017) The Aurora-ATwist1 axis promotes highly aggressive phenotypes in pancreatic carcinoma. J Cell Sci 130(6):1078–1093Google Scholar
- 98.Sen-Yo M, Suehiro Y, Kaino S et al (2013) TWIST1 hypermethylation is observed in pancreatic cancer. Biomed Rep 1(1):31–33CrossRefPubMedGoogle Scholar
- 99.Shiota M, Yokomizo A, Tada Y et al (2010) Castration resistance of prostate cancer cells caused by castration-induced oxidative stress through Twist1 and androgen receptor overexpression. Oncogene 29:237–250CrossRefPubMedGoogle Scholar
- 100.Takeuchi A, Shiota M, Beraldi E et al (2014) Insulin-like growth factor-I induces CLU expression through Twist1 to promote prostate cancer growth. Mol Cell Endocrinol 384(1–2):117–125CrossRefPubMedGoogle Scholar
- 101.Shiota M, Itsumi M, Takeuchi A et al (2015) Crosstalk between epithelial-mesenchymal transition and castration resistance mediated by Twist1/AR signaling in prostate cancer. Endocr Relat Cancer 22(6):889–900CrossRefPubMedGoogle Scholar
- 102.Mahajan K, Coppola D, Chen YA et al (2012) Ack1 tyrosine kinase activation correlates with pancreatic cancer progression. Am J Pathol 180(4):1386–1393CrossRefPubMedPubMedCentralGoogle Scholar
- 103.Wu X, Cao Y, Het al X (2016) Bazedoxifene as a novel GP130 inhibitor for pancreatic Cancer therapy. Mol Cancer Ther 15(11):2609–2619CrossRefPubMedPubMedCentralGoogle Scholar
- 104.Yanagisawa N, Ichinoe M, Mikami T et al (2012) High expression of L-type amino acid transporter 1 (LAT1) predicts poor prognosis in pancreatic ductal adenocarcinomas. J Clin Pathol 65(11):1019–1023CrossRefPubMedGoogle Scholar
- 105.Wang Q, Bailey CG, Ng C et al (2011) Androgen receptor and nutrient signaling pathways coordinate the demand for increased amino acidtransport during prostate cancer progression. Cancer Res 71(24):7525–7536CrossRefPubMedGoogle Scholar
- 106.Tursynbay Y, Zhang J, Li Z et al (2016) Tokay T, Zhumadilov Z, Wu D, Xie Y.Pim-1 kinase as cancer drug target: an update. Biomed Rep 4(2):140–146CrossRefPubMedGoogle Scholar
- 107.Xu J, Xiong G, Cao Z et al (2016) PIM-1 contributes to the malignancy of pancreatic cancer and displays diagnostic and prognostic value. J Exp Clin Cancer Res 35(1):133CrossRefPubMedPubMedCentralGoogle Scholar
- 108.Block KM, Hanke NT, Maine EA et al (2012) IL-6 stimulates STAT3 and Pim-1 kinase in pancreatic cancer cell lines. Pancreas 41(5):773–781PubMedPubMedCentralGoogle Scholar
- 109.Linn DE, Yang X, Xie Y et al (2012) Differential regulation of androgen receptor by PIM-1 kinases via phosphorylation-dependent recruitment of distinct ubiquitin E3 ligases. J Biol Chem 287(27):22959–22968CrossRefPubMedPubMedCentralGoogle Scholar
- 110.Holder SL, Abdulkadir SA (2014) PIM1 kinase as a target in prostate cancer: roles in tumorigenesis, castration resistance, and docetaxel resistance. Curr Cancer Drug Targets 14(2):105–114CrossRefPubMedGoogle Scholar
- 111.Wang J, Quan CY, Chang WL et al (2015) Correlation between the expression of Pim-1 and androgen-deprivation therapy for prostate cancer. Zhonghua Nan Ke Xue 21(9):775–781PubMedGoogle Scholar
- 112.Jin UH, Kim SB, Safe S (2015) Omeprazole inhibits pancreatic Cancer cell invasion through a nongenomic aryl hydrocarbon receptor pathway. Chem Res Toxicol 28(5):907–918CrossRefPubMedPubMedCentralGoogle Scholar
- 113.Le Novère N, Hucka M, Mi H, Moodie S, Schreiber F, Sorokin A, Demir E (2009) The systems biology graphical notation. Nat Biotechnol 27(8):735–741CrossRefPubMedGoogle Scholar
- 114.Szende B, Srkalovic G, Timar J et al (1991) Localization of receptors for luteinizing hormone-releasing hormone in pancreatic and mammary cancer cells. Proc Natl Acad Sci U S A 88(10):4153–4156CrossRefPubMedPubMedCentralGoogle Scholar
- 115.Salonia A, Abdollah F, Capitanio U et al (2012) Serum sex steroids depict a nonlinear u-shaped association with high-risk prostate cancer at radical prostatectomy. Clin Cancer Res 18(13):3648–3657CrossRefPubMedGoogle Scholar
- 116.Iqbal MJ, Greenway B, Wilkinson ML et al (1983) Sex-steroid enzymes, aromatase and 5 alpha-reductase in the pancreas: a comparison of normal adult, foetal and malignant tissue. Clin Sci (Lond) 65(1):71–75CrossRefGoogle Scholar
- 117.Shiota M, Fujimoto N, Yokomizo A et al (2015) SRD5A gene polymorphism in Japanese men predicts prognosis of metastatic prostate cancer with androgen-deprivation therapy. Eur J Cancer 51(14):1962–1969CrossRefPubMedGoogle Scholar
- 118.Cai C, Chen S, Ng P et al (2011) Intratumoral de novo steroid synthesis activates androgen receptor in castration-resistant prostate cancer and is upregulated by treatment with CYP17A1 inhibitors. Cancer Res 71(20):6503–6513CrossRefPubMedPubMedCentralGoogle Scholar
- 119.Latil A, Bièche I, Vidaud D et al (2001) Evaluation of androgen, estrogen (ERα and ERβ), and progesterone receptor expression in human prostate cancer by real-time quantitative reverse transcription-polymerase chain reaction assays. Cancer Res 61(5):1919–1926PubMedGoogle Scholar
- 120.Greenway B, Iqbal MJ, Johnson PJ et al (1981) Oestrogen receptor proteins in malignant and fetal pancreas. Br Med J (Clin Res Ed) 283(6294):751–753CrossRefGoogle Scholar
- 121.Christoforou P, Christopoulos PF, Koutsilieris M (2014) The role of estrogen receptor β in prostate Cancer. Mol Med 20(1):427–434CrossRefPubMedPubMedCentralGoogle Scholar
- 122.Ellem SJ, Schmitt JF et al (2004) Local aromatase expression in human prostate is altered in malignancy. J Clin Endocrinol Metab 89:2434–2441CrossRefPubMedGoogle Scholar
- 123.Balk SP, Ko YJ, Bubley GJ (2003) Biology of prostate-specific antigen. J Clin Oncol 21(2):383–391CrossRefPubMedGoogle Scholar
- 124.Ren H, Zhang H, Wang X et al (2014) Prostate-specific membrane antigen as a marker of pancreatic cancer cells. Med Oncol 31(3):857CrossRefPubMedGoogle Scholar
- 125.Chou A, Waddell N, Cowley MJ et al (2013) Clinical and molecular characterization of HER2 amplified-pancreatic cancer. Genome Med 5(8):78CrossRefPubMedPubMedCentralGoogle Scholar
- 126.Vaishampayan U, Thakur A, Rathore R, Kouttab N, Lum LG (2015) Phase I Study of anti-CD3 x anti-Her2 bispecific antibody in metastatic castrate resistant prostate cancer patients. Prostate Cancer 2015:285193. https://doi.org/10.1155/2015/285193 CrossRefGoogle Scholar
- 127.Tien JC, Liu Z, Liao L et al (2013) The steroid receptor Coactivator-3 is required for the development of castration-resistant prostate Cancer. Cancer Res 73(13):3997–4008CrossRefPubMedPubMedCentralGoogle Scholar
- 128.Lam HM, Ouyang B, Chen J et al (2014) Targeting GPR30 with G-1: a new therapeutic target for castration-resistant prostate cancer. Endocr Relat Cancer 21(6):903–914CrossRefPubMedPubMedCentralGoogle Scholar
- 129.Kimbara S, Kondo S (2016) Immune checkpoint and inflammation as therapeutic targets in pancreatic carcinoma. World J Gastroenterol 22(33):7440–7452CrossRefPubMedPubMedCentralGoogle Scholar
- 130.Hustinx SR, Leoni LM, Yeo CJ et al (2005) Concordant loss of MTAP and p16/CDKN2A expression in pancreatic intraepithelial neoplasia: evidence of homozygous deletion in a noninvasive precursor lesion. Mod Pathol 18(7):959–963CrossRefPubMedGoogle Scholar
- 131.Collins CC, Volik SV, Lapuk AV et al (2012) Next generation sequencing of prostate Cancer from a patient identifies a deficiency of Methylthioadenosine phosphorylase (MTAP), an exploitable tumor target. Mol Cancer Ther 11(3):775–783CrossRefPubMedPubMedCentralGoogle Scholar
- 132.Azzopardi S, Pang S, Klimstra DS et al (2016) p53 and p16Ink4a/p19Arf Loss Promotes Different Pancreatic Tumor Types from PyMT-Expressing Progenitor Cells. Neoplasia 18(10):610–617CrossRefPubMedPubMedCentralGoogle Scholar
- 133.Deng Y, Lu J (2015) Targeting hexokinase 2 in castration-resistant prostate cancer. Mol Cell Oncol 2(3):e974465CrossRefPubMedPubMedCentralGoogle Scholar
- 134.Cozzi PJ, Wang J, Delprado W et al (2005) MUC1, MUC2, MUC4, MUC5AC and MUC6 expression in the progression of prostate cancer. Clin Exp Metastasis 22(7):565–573CrossRefPubMedGoogle Scholar
- 135.Park JY, Hiroshima Y, Lee JY, MUC1 et al (2015) Selectively targets human pancreatic Cancer in Orthotopic nude mouse models. PLoS One 10(3):e0122100CrossRefPubMedPubMedCentralGoogle Scholar
- 136.Drivdahl R, Haugk KH et al (2004) Suppression of growth and tumorigenicity in the prostate tumor cell line M12 by overexpression of the transcription factor SOX9. Oncogene 23:4584–4593CrossRefPubMedGoogle Scholar
- 137.Nagathihalli NS, Castellanos JA, VanSaun MN et al (2016) Pancreatic stellate cell secreted IL-6 stimulates STAT3 dependent invasiveness of pancreatic intraepithelial neoplasia and cancer cells. Oncotarget 7(40):65982–65992CrossRefPubMedPubMedCentralGoogle Scholar
- 138.Schweizer L, Rizzo CA, Spires TE et al (2008) The androgen receptor can signal through Wnt/beta-catenin in prostate cancer cells as an adaptation mechanism to castration levels of androgens. BMC Cell Biol 9:4CrossRefPubMedPubMedCentralGoogle Scholar
- 139.The Cancer Genome Atlas Research (2017) Network Integrated Genomic Characterisation of PAncreatic Ductal Adenocarcinom. Cancer Cell 32(3):185–203 e13Google Scholar
- 140.Kasina S, Macoska JA (2012) The CXCL12/CXCR4 axis promotes ligand-independent activation of the androgen receptor. Mol Cell Endocrinol 351(2):249–263CrossRefPubMedPubMedCentralGoogle Scholar
- 141.Deng L, Shang Y, Guo S et al (2014) Ran GTPase protein promotes metastasis and invasion in pancreatic cancer by deregulating the expression of AR and CXCR4. Cancer Biol Ther 15(8):1087–1093CrossRefPubMedPubMedCentralGoogle Scholar
- 142.Yang YA, Yu J (2015) Current perspectives on FOXA1 regulation of androgen receptor signaling and prostate cancer. Genes Dis 2(2):144–151CrossRefPubMedPubMedCentralGoogle Scholar
- 143.Behnsawy HM, Miyake H, Harada K et al (2013) Expression patterns of epithelial-mesenchymal transition markers in localized prostate cancer: significance in clinicpathological outcomes following radical prostatectomy. BJU 111(1):30–37CrossRefGoogle Scholar
- 144.Chen S, Chen JZ, Zhang JQ et al (2016) Hypoxia induces TWIST-activated epithelial-mesenchymal transition and proliferation of pancreatic cancer cells in vitro and in nude mice. Cancer Lett 383(1):73–84CrossRefPubMedGoogle Scholar
- 145.Gao S, Sun Y, Zhang X et al (2016) IGFBP2 activates the NF-κB pathway to drive epithelial-mesenchymal transition and invasive character in pancreatic ductal adenocarcinoma. Cancer Res 76(22):6543–6554CrossRefPubMedPubMedCentralGoogle Scholar