Pathology & Oncology Research

, Volume 25, Issue 2, pp 493–501 | Cite as

Protein Expression Analysis in Uterine Cervical Cancer for Potential Targets in Treatment

  • Sugela Blancas
  • Rogelio Medina-Berlanga
  • Liliana Ortíz-García
  • Alfredo Loredo-Ramírez
  • Leticia SantosEmail author
Original Article


Specific markers in lesions of the human uterine cervix cancer (UCC) are still needed for prognostic, diagnostic and/or therapeutic purposes. In this study we evaluated key molecules at protein level between normal epithelium, cervical intraepithelial neoplasia (CIN1–3) and invasive cancer of a group of molecules previously reported at mRNA level. For that purpose, human formalin-fixed paraffin embedded tissue microarrays (TMAs) were constructed containing 205 Mexican tissue core specimens. Immunohistochemistry and quantitative analysis of histological staining was performed against twenty-two distinct proteins for each core and the processing platform ImageJ. In the progression of the disease we found key statistical differences for the proteins SEL1, Notch3 and SOCS3. High expressions of SEL1L, Notch3 and SOCS3 have potential value to increase the prognostic of UCC in combination with markers such as p16INK4a. This study identified key drivers in cervical carcinogenesis that should be evaluated for the development of UCC therapies.


Uterine cervical cancer SEL1L Notch3 SOCS3 Immunohistochemistry Tissue microarray 



We thank Dr. Cuauhtémoc Oros Ovalle (C.O.O) and Dr. Alfredo Loredo Ramírez (A.L.R.) for providing us the specimens and for helpful diagnostic confirmation respectively. We would also like to thank Dr. Peter B. Mandeville for conducting the statistical analyses.


This study was financially supported by the Mexican sectorial grant SSA/IMSS/ISSSTE-CONACYT under project number 2011–1-160607 (to L. Santos). Dr. Sugela Blancas, postdoctoral fellow and Rogelio Medina-Berlanga (M. Sc. scholarship no. 300170) received scholarships from Consejo Nacional de Ciencia y Tecnología (CONACYT, Mexico).

Compliance with Ethical Standards

Ethical Approval

The bioethical committee of this Institution (Comisión de Seguridad e Higiene y Medio Ambiente en el Trabajo, CSHyMA-IPICYT) approved the experimental design of this work under the letter no. 003.

Informed Consent

The manuscript does not contain any studies with human participants by any of the authors and archive cases remained anonymous.

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12253_2018_401_MOESM1_ESM.xlsx (54 kb)
ESM 1 (XLSX 53 kb)


  1. 1.
    Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, Snijders PJ, Peto J, Meijer CJ, Munoz N (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189(1):12–19.<12::AID-PATH431>3.0.CO;2-F CrossRefGoogle Scholar
  2. 2.
    Malinowski DP (2007) Multiple biomarkers in molecular oncology. I. Molecular diagnostics applications in cervical cancer detection. Expert Rev Mol Diagn 7(2):117–131. CrossRefGoogle Scholar
  3. 3.
    Brown CA, Bogers J, Sahebali S, Depuydt CE, De Prins F, Malinowski DP (2012) Role of protein biomarkers in the detection of high-grade disease in cervical cancer screening programs. J Oncol 2012:289315–289311. Google Scholar
  4. 4.
    Santos L, Leon-Galvan MF, Marino-Marmolejo EN, Barba de la Rosa AP, De Leon RA, Gonzalez-Amaro R, Guevara-Gonzalez RG (2011) Identification of differential expressed transcripts in cervical cancer of Mexican patients. Tumour Biol: J Int Soc Oncodev Biol Med 32(3):561–568. CrossRefGoogle Scholar
  5. 5.
    Palermo R, Checquolo S, Bellavia D, Talora C, Screpanti I (2014) The molecular basis of notch signaling regulation: a complex simplicity. Curr Mol Med 14(1):34–44CrossRefGoogle Scholar
  6. 6.
    Allenspach EJ, Maillard I, Aster JC, Pear WS (2002) Notch signaling in cancer. Cancer Biol Ther 1(5):466–476CrossRefGoogle Scholar
  7. 7.
    Arafa M, Boniver J, Delvenne P (2010) Progression model tissue microarray (TMA) for the study of uterine carcinomas. Dis Markers 28(5):267–272. CrossRefGoogle Scholar
  8. 8.
    Zhu H, Zhou X, Redfield S, Lewin J, Miele L (2013) Elevated Jagged-1 and Notch-1 expression in high grade and metastatic prostate cancers. Am J Transl Res 5(3):368–378Google Scholar
  9. 9.
    Cornish TC, Halushka MK (2009) Color deconvolution for the analysis of tissue microarrays. Anal Quant Cytol Histol/ Int Acad Cytol Am Soc Cytol 31(5):304–312Google Scholar
  10. 10.
    Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591-&.
  11. 11.
    Keyes TK, Levy MS (1997) Analysis of Levene's test under design imbalance. J Educ Behav Stat 22(2):227–236Google Scholar
  12. 12.
    Box GEP, Cox DR (1964) An analysis of transformations. J Roy Stat Soc B 26(2):211–252Google Scholar
  13. 13.
    Cicchett Dv, Collins D, Latvis V (1972) Program for Comparing Group Means - One-Way Anova and Tukey Multiple-Range Tests. Behav Sci 17 (4):399-&Google Scholar
  14. 14.
    Keselman HJ, Murray R (1974) Tukey tests for pair-wise contrasts following analysis of variance - is there a type 4 error. Psychol Bull 81(9):608–609. CrossRefGoogle Scholar
  15. 15.
    Li JJ (2011) A simple and flexible holm gatekeeping procedure. Biom J 53(5):797–809. CrossRefGoogle Scholar
  16. 16.
    Ikenberg H, Bergeron C, Schmidt D, Griesser H, Alameda F, Angeloni C, Bogers J, Dachez R, Denton K, Hariri J, Keller T, von Knebel Doeberitz M, Neumann HH, Puig-Tintore LM, Sideri M, Rehm S, Ridder R, Group PS (2013) Screening for cervical cancer precursors with p16/Ki-67 dual-stained cytology: results of the PALMS study. J Natl Cancer Inst 105(20):1550–1557. CrossRefGoogle Scholar
  17. 17.
    Wentzensen N, Fetterman B, Castle PE, Schiffman M, Wood SN, Stiemerling E, Tokugawa D, Bodelon C, Poitras N, Lorey T, Kinney W (2015) p16/Ki-67 dual stain cytology for detection of cervical Precancer in HPV-positive women. J Natl Cancer Inst 107(12):djv257. CrossRefGoogle Scholar
  18. 18.
    Garner DM (2016) RE: p16/Ki-67 dual stain cytology for detection of cervical Precancer in HPV-positive women. J Natl Cancer Inst 108(2):djv389. CrossRefGoogle Scholar
  19. 19.
    Benczik M, Galamb A, Koiss R, Kovacs A, Jaray B, Szekely T, Szekerczes T, Schaff Z, Sobel G, Jeney C (2016) Claudin-1 as a biomarker of cervical cytology and histology. Pathol Oncol Res 22(1):179–188. CrossRefGoogle Scholar
  20. 20.
    Klaes R, Friedrich T, Spitkovsky D, Ridder R, Rudy W, Petry U, Dallenbach-Hellweg G, Schmidt D, von Knebel Doeberitz M (2001) Overexpression of p16(INK4A) as a specific marker for dysplastic and neoplastic epithelial cells of the cervix uteri. Int J Cancer 92(2):276–284CrossRefGoogle Scholar
  21. 21.
    Volgareva G, Zavalishina L, Andreeva Y, Frank G, Krutikova E, Golovina D, Bliev A, Spitkovsky D, Ermilova V, Kisseljov F (2004) Protein p16 as a marker of dysplastic and neoplastic alterations in cervical epithelial cells. BMC Cancer 4(58).
  22. 22.
    Harada Y, Ozaki K, Suzuki M, Fujiwara T, Takahashi E, Nakamura Y, Tanigami A (1999) Complete cDNA sequence and genomic organization of a human pancreas-specific gene homologous to Caenorhabditis elegans sel-1. J Hum Genet 44(5):330–336. CrossRefGoogle Scholar
  23. 23.
    Li S, Francisco AB, Munroe RJ, Schimenti JC, Long Q (2010) SEL1L deficiency impairs growth and differentiation of pancreatic epithelial cells. BMC Dev Biol 10:19. CrossRefGoogle Scholar
  24. 24.
    Cattaneo M, Lotti LV, Martino S, Alessio M, Conti A, Bachi A, Mariani-Costantini R, Biunno I (2011) Secretion of novel SEL1L endogenous variants is promoted by ER stress/UPR via endosomes and shed vesicles in human cancer cells. PLoS One 6(2):e17206. CrossRefGoogle Scholar
  25. 25.
    Ashktorab H, Green W, Finzi G, Sessa F, Nouraie M, Lee EL, Morgano A, Moschetta A, Cattaneo M, Mariani-Costantini R, Brim H, Biunno I (2012) SEL1L, an UPR response protein, a potential marker of colonic cell transformation. Dig Dis Sci 57(4):905–912. CrossRefGoogle Scholar
  26. 26.
    Wang SS, Hsiao R, Limpar MM, Lomahan S, Tran TA, Maloney NJ, Ikegaki N, Tang XX (2014) Destabilization of MYC/MYCN by the mitochondrial inhibitors, metaiodobenzylguanidine, metformin and phenformin. Int J Mol Med 33(1):35–42. CrossRefGoogle Scholar
  27. 27.
    Duffy DJ, Krstic A, Schwarzl T, Higgins DG, Kolch W (2014) GSK3 inhibitors regulate MYCN mRNA levels and reduce neuroblastoma cell viability through multiple mechanisms, including p53 and Wnt signaling. Mol Cancer Ther 13(2):454–467. CrossRefGoogle Scholar
  28. 28.
    Kang JH, Rychahou PG, Ishola TA, Qiao J, Evers BM, Chung DH (2006) MYCN silencing induces differentiation and apoptosis in human neuroblastoma cells. Biochem Biophys Res Commun 351(1):192–197. CrossRefGoogle Scholar
  29. 29.
    Cui H, Kong Y, Xu M, Zhang H (2013) Notch3 functions as a tumor suppressor by controlling cellular senescence. Cancer Res 73(11):3451–3459. CrossRefGoogle Scholar
  30. 30.
    Jaskula-Sztul R, Eide J, Tesfazghi S, Dammalapati A, Harrison AD, Yu XM, Scheinebeck C, Winston-McPherson G, Kupcho KR, Robers MB, Hundal AK, Tang W, Chen H (2015) Tumor-suppressor role of Notch3 in medullary thyroid carcinoma revealed by genetic and pharmacological induction. Mol Cancer Ther 14(2):499–512. CrossRefGoogle Scholar
  31. 31.
    Pelullo M, Quaranta R, Talora C, Checquolo S, Cialfi S, Felli MP, te Kronnie G, Borga C, Besharat ZM, Palermo R, Di Marcotullio L, Capobianco AJ, Gulino A, Screpanti I, Bellavia D (2014) Notch3/Jagged1 circuitry reinforces notch signaling and sustains T-ALL. Neoplasia 16(12):1007–1017. CrossRefGoogle Scholar
  32. 32.
    Jung JG, Stoeck A, Guan B, Wu RC, Zhu H, Blackshaw S, Shih Ie M, Wang TL (2014) Notch3 interactome analysis identified WWP2 as a negative regulator of Notch3 signaling in ovarian cancer. PLoS Genet 10(10):e1004751. CrossRefGoogle Scholar
  33. 33.
    Bianchi L, Canton C, Bini L, Orlandi R, Menard S, Armini A, Cattaneo M, Pallini V, Bernardi LR, Biunno I (2005) Protein profile changes in the human breast cancer cell line MCF-7 in response to SEL1L gene induction. Proteomics 5(9):2433–2442. CrossRefGoogle Scholar
  34. 34.
    Yeasmin S, Nakayama K, Rahman MT, Rahman M, Ishikawa M, Iida K, Otsuki Y, Kobayashi H, Nakayama S, Miyazaki K (2010) Expression of nuclear Notch3 in cervical squamous cell carcinomas and its association with adverse clinical outcomes. Gynecol Oncol 117(3):409–416. CrossRefGoogle Scholar
  35. 35.
    Tripathi R, Rath G, Jawanjal P, Sharma S, Singhal P, Bhambhani S, Hussain S, Bharadwaj M (2014) Clinical impact of de-regulated Notch-1 and Notch-3 in the development and progression of HPV-associated different histological subtypes of precancerous and cancerous lesions of human uterine cervix. PLoS One 9(6):e98642. CrossRefGoogle Scholar
  36. 36.
    Bellavia D, Campese AF, Alesse E, Vacca A, Felli MP, Balestri A, Stoppacciaro A, Tiveron C, Tatangelo L, Giovarelli M, Gaetano C, Ruco L, Hoffman ES, Hayday AC, Lendahl U, Frati L, Gulino A, Screpanti I (2000) Constitutive activation of NF-kappaB and T-cell leukemia/lymphoma in Notch3 transgenic mice. EMBO J 19(13):3337–3348. CrossRefGoogle Scholar
  37. 37.
    Bellavia D, Campese AF, Checquolo S, Balestri A, Biondi A, Cazzaniga G, Lendahl U, Fehling HJ, Hayday AC, Frati L, von Boehmer H, Gulino A, Screpanti I (2002) Combined expression of pTalpha and Notch3 in T cell leukemia identifies the requirement of preTCR for leukemogenesis. Proc Natl Acad Sci U S A 99 (6):3788–3793.
  38. 38.
    Zhang Y, Jia L, Lee SJ, Wang MM (2007) Conserved signal peptide of Notch3 inhibits interaction with proteasome. Biochem Biophys Res Commun 355(1):245–251. CrossRefGoogle Scholar
  39. 39.
    Palermo R, Checquolo S, Giovenco A, Grazioli P, Kumar V, Campese AF, Giorgi A, Napolitano M, Canettieri G, Ferrara G, Schinina ME, Maroder M, Frati L, Gulino A, Vacca A, Screpanti I (2012) Acetylation controls Notch3 stability and function in T-cell leukemia. Oncogene 31(33):3807–3817. CrossRefGoogle Scholar
  40. 40.
    Sasi W, Sharma AK, Mokbel K (2014) The role of suppressors of cytokine signalling in human neoplasms. Mol Biol Int 2014(630797):1–24. CrossRefGoogle Scholar
  41. 41.
    Puhr M, Santer FR, Neuwirt H, Marcias G, Hobisch A, Culig Z (2010) SOCS-3 antagonises the proliferative and migratory effects of fibroblast growth factor-2 in prostate cancer by inhibition of p44/p42 MAPK signalling. Endocr Relat Cancer 17(2):525–538. CrossRefGoogle Scholar
  42. 42.
    Kim MH, Kim MS, Kim W, Kang MA, Cacalano NA, Kang SB, Shin YJ, Jeong JH (2015) Suppressor of cytokine signaling (SOCS) genes are silenced by DNA hypermethylation and histone deacetylation and regulate response to radiotherapy in cervical cancer cells. PLoS One 10(4):e0123133. CrossRefGoogle Scholar

Copyright information

© Arányi Lajos Foundation 2018

Authors and Affiliations

  1. 1.División de Biología MolecularInstituto Potosino de Investigación Científica y Tecnológica, A.C. (IPICYT)San Luis PotosíMexico
  2. 2.Centro de Ciencias de la SaludUniversidad Autónoma de AguascalientesAguascalientesMexico
  3. 3.Facultad de Ingeniería en BiotecnologíaUniversidad Politécnica de PénjamoGuanajuatoMexico
  4. 4.Laboratorio de Patología QuirúrgicaSan Luis PotosíMexico

Personalised recommendations