Advertisement

Immunohistochemical Profile of Tumor Suppressor Proteins RASSF1A and LATS1/2 in Relation to p73 and YAP Expression, of Human Inflammatory Bowel Disease and Normal Intestine

  • Pinelopi Nterma
  • Eleni Panopoulou
  • Eleni Papadaki-Petrou
  • Martha Assimakopoulou
Original Article
  • 51 Downloads

Abstract

The intestinal neoplastic transformation is a possible risk of chronic inflammatory bowel disease (IBD). Previous evidence in mice IBD provides a role for the RAS-association domain family tumor suppressor protein 1 A (RASSF1A), in the repairing process following mucosa epithelium damage, through cooperation with the HIPPO-signaling molecules p73, and YAP. HIPPO pathway which has been implicated in stem cell activity includes as key components for signal transduction the large tumor suppressor homology Ser/Thr kinases LATS1/2. The aim of this study was to assess immunohistochemically, using specific antibodies, the RASSF1A and LATS1/2 expression patterns in a cohort of patients with IBD including 52 ulcerative colitis (UC), 24 Crohn’s disease (CD) and 24 IBD unclassified (IBD-U), compared with normal intestine from non-IBD patients (control group). The relationship between subtypes of IBD and RASSF1A and LATS1/2 expression, both individually and related to p73 and YAP/pYAP(Ser127) proteins was also investigated. Quantitative analyses of the immunohistochemical findings in mucosa cells revealed a significantly decreased expression in UC and IBD-U for RASSF1A expression and a significantly elevated expression in UC, IBD-U, and CD for LATS1/2 expression compared with normal mucosa (P < 0.05). However, ROC curve analysis showed that only LATS1/2 could differentiate IBD from control group. RASSF1A expression was significantly correlated with LATS1/2 in UC with dysplasia (P < 0.0001), and p73 in UC (P < 0.001), and IBD-U (P < 0.02). The expression of all proteins did not differ significantly between subtypes of IBD (P ≥ 0.05). RASSF1A-LATS1/2 co-expression was mainly observed in IBD samples. These findings suggest that tumor suppression proteins RASSF1A and LATS1/2 may be involved in the pathogenesis of human IBD and imply a potential cooperation of RASSF1A, and HIPPO signaling pathways in human bowel inflammation.

Keywords

RASSF1A LATS1/2 HIPPO pathway Human inflammatory bowel disease Ulcerative colitis Crohn’s disease 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Maher MM (2012) Inflammatory bowel disease: review and future view. Front Biosci (Elite Ed) 4:1638–1647CrossRefGoogle Scholar
  2. 2.
    Conrad K, Roggenbuck D, Laass MW (2014) Diagnosis and classification of ulcerative colitis. Autoimmun Rev 13(4–5):463–466CrossRefGoogle Scholar
  3. 3.
    Laass MW, Roggenbuck D, Conrad K (2014) Diagnosis and classification of Crohn's disease. Autoimmun Rev 13(4–5):467–471CrossRefGoogle Scholar
  4. 4.
    Feakins RM (2014) Ulcerative colitis or Crohn's disease? Pitfalls and problems. Histopathology 64(3):317–335CrossRefGoogle Scholar
  5. 5.
    Martland GT, Shepherd NA (2007) Indeterminate colitis: definition, diagnosis, implications and a plea for nosological sanity. Histopathology 50(1):83–96CrossRefGoogle Scholar
  6. 6.
    Okayasu I (2012) Development of ulcerative colitis and its associated colorectal neoplasia as a model of the organ-specific chronic inflammation-carcinoma sequence. Pathol Int 62:368–380CrossRefGoogle Scholar
  7. 7.
    Rogler G (2014) Chronic ulcerative colitis and colorectal cancer. Cancer Lett 345:235–241CrossRefGoogle Scholar
  8. 8.
    Donninger H, Vos MD, Clark GJ (2007) The RASSF1A tumor suppressor. J Cell Sci 120:3163–3172CrossRefGoogle Scholar
  9. 9.
    Overmeyer JH, Maltese WA (2011) Death pathways triggered by activated Ras in cancer cells. Front Biosci (Landmark Ed) 16:1693–1713CrossRefGoogle Scholar
  10. 10.
    Song MS, Song SJ, Kim SY, Oh HJ, Lim DS (2008) The tumour suppressor RASSF1A promotes MDM2 self-ubiquitination by disrupting the MDM2–DAXX–HAUSP complex. EMBO J 27:1863–1874CrossRefGoogle Scholar
  11. 11.
    Agathanggelou A, Cooper WN, Latif F (2005) Role of the Ras-association domain family 1 tumor suppressor gene in human cancers. Cancer Res 65:3497–3508CrossRefGoogle Scholar
  12. 12.
    Abouzeid HE, Kassem AM, Abdel Wahab AH, El-mezayen HA, Sharad H, Abdel Rahman S (2011) Promoter hypermethylation of RASSF1A, MGMT, and HIC-1 genes in benign and malignant colorectal tumors. Tumour Biol 32:845–852CrossRefGoogle Scholar
  13. 13.
    Sakamoto N, Terai T, Ajioka Y, Abe S, Kobayasi O, Hirai S, Hino O, Watanabe H, Sato N, Shimoda T, Fujii H (2004) Frequent hypermethylation of RASSF1A in early flat-type colorectal tumors. Oncogene 23(55):8900–8907CrossRefGoogle Scholar
  14. 14.
    Cao D, Chen Y, Tang Y, Peng XC, Dong H, Li LH, Cheng K, Ge J, Liu JY (2013) Loss of RASSF1A expression in colorectal cancer and its association with K-ras status. Biomed Res Int 2013:976765Google Scholar
  15. 15.
    Gordon M, El-Kalla M, Zhao Y, Fiteih Y, Law J, Volodko N, Anwar-Mohamed A, El-Kadi AO, Liu L, Odenbach J, Thiesen A, Onyskiw C, Ghazaleh HA, Park J, Lee SB, Yu VC, Fernandez-Patron C, Alexander RT, Wine E, Baksh S (2013) The tumor suppressor gene, RASSF1A, is essential for protection against inflammation-induced injury. PLoS One 8(10):e75483CrossRefGoogle Scholar
  16. 16.
    Hiemer SE, Varelas X (2013) Stem cell regulation by the Hippo pathway. Biochim Biophys Acta 1830(2):2323–2334CrossRefGoogle Scholar
  17. 17.
    Ramos A, Camargo FD (2012) The Hippo signaling pathway and stem cell biology. Trends Cell Biol 22(7):339–346CrossRefGoogle Scholar
  18. 18.
    Hong W, Guan KL (2012) The YAP and TAZ transcription co-activators: key downstream effectors of the mammalian Hippo pathway. Semin Cell Dev Biol 23(7):785–793CrossRefGoogle Scholar
  19. 19.
    Levy D, Adamovich Y, Reuven N, Shaul Y (2008) Yap1 phosphorylation by c-Abl is a critical step in selective activation of proapoptotic genes in response to DNA damage. Mol Cell 29(3):350–361CrossRefGoogle Scholar
  20. 20.
    Matallanas D, Romano D, Yee K, Meissl K, Kucerova L, Piazzolla D, Baccarini M, Vass JK, Kolch W, O'neill E (2007) RASSF1A elicits apoptosis through an MST2 pathway directing proapoptotic transcription by the p73 tumor suppressor protein. Mol Cell 27(6):962–975CrossRefGoogle Scholar
  21. 21.
    Li VS, Clevers H (2013) Intestinal regeneration: YAP-tumor suppressor and oncoprotein? Curr Biol 23(3):R110–R112CrossRefGoogle Scholar
  22. 22.
    Cai J, Zhang N, Zheng Y, de Wilde RF, Maitra A, Pan D (2010) The Hippo signaling pathway restricts the oncogenic potential of an intestinal regeneration program. Genes Dev 24(21):2383–2388CrossRefGoogle Scholar
  23. 23.
    Barry ER, Morikawa T, Butler BL, Shrestha K, de la Rosa R, Yan KS, Fuchs CS, Magness ST, Smits R, Ogino S, Kuo CJ, Camargo FD (2013) Restriction of intestinal stem cell expansion and the regenerative response by YAP. Nature 493(7430):106–110CrossRefGoogle Scholar
  24. 24.
    Avruch J, Zhou D, Bardeesy N (2012) YAP oncogene overexpression supercharges colon cancer proliferation. Cell Cycle 11(6):1090–1096CrossRefGoogle Scholar
  25. 25.
    Wang L, Shi S, Guo Z, Zhang X, Han S, Yang A, Wen W, Zhu Q (2013) Overexpression of YAP and TAZ is an independent predictor of prognosis in colorectal cancer and related to the proliferation and metastasis of colon cancer cells. PLoS One 8(6):e65539CrossRefGoogle Scholar
  26. 26.
    Wang Y, Dong Q, Zhang Q, Li Z, Wang E, Qiu X (2010) Overexpression of yes-associated protein contributes to progression and poor prognosis of non-small-cell lung cancer. Cancer Sci 101:1279–1285CrossRefGoogle Scholar
  27. 27.
    Ji T, Liu D, Shao W, Yang W, Wu H, Bian X (2012) Decreased expression of LATS1 is correlated with the progression and prognosis of glioma. J Exp Clin Cancer Res 31:67CrossRefGoogle Scholar
  28. 28.
    Puig P, Capodieci P, Drobnjak M, Verbel D, Prives C, Cordon-Cardo C, Di Como CJ (2003) p73 expression in human normal and tumor tissues: loss of p73 expression is associated with tumor progression in bladder cancer. Clin Cancer Res 9:5642–5651Google Scholar
  29. 29.
    Guan M, Peng HX, Yu B, Lu Y (2003) p73 Overexpression and angiogenesis in human colorectal carcinoma. Jpn J Clin Oncol 33(5):215–220CrossRefGoogle Scholar
  30. 30.
    Fernandes MS, Carneiro F, Oliveira C, Seruca R (2013) Colorectal cancer and RASSF family--a special emphasis on RASSF1A. Int J Cancer 132(2):251–258CrossRefGoogle Scholar
  31. 31.
    Wagner KJ, Cooper WN, Grundy RG, Caldwell G, Jones C, Wadey RB, Morton D, Schofield PN, Reik W, Latif F, Maher ER (2002) Frequent RASSF1A tumour suppressor gene promoter methylation in Wilms' tumour and colorectal cancer. Oncogene 21(47):7277–7282CrossRefGoogle Scholar
  32. 32.
    Visser S, Yang X (2010) LATS tumor suppressor: a new governor of cellular homeostasis. Cell Cycle 9(19):3892–3903CrossRefGoogle Scholar
  33. 33.
    Wierzbicki PM, Adrych K, Kartanowicz D, Stanislawowski M, Kowalczyk A, Godlewski J, Skwierz-Bogdanska I, Celinski K, Gach T, Kulig J, Korybalski B, Kmiec Z (2013) Underexpression of LATS1 TSG in colorectal cancer is associated with promoter hypermethylation. World J Gastroenterol 19(27):4363–4373CrossRefGoogle Scholar
  34. 34.
    Xia H, Qi H, Li Y, Pei J, Barton J, Blackstad M, Xu T, Tao W (2002) LATS1 tumor suppressor regulates G2/M transition and apoptosis. Oncogene 21(8):1233–1241CrossRefGoogle Scholar
  35. 35.
    Villanacci V, Antonelli E, Geboes K, Casella G, Bassotti G (2013) Histological healing in inflammatory bowel disease: a still unfulfilled promise. World J Gastroenterol 19(7):968–978CrossRefGoogle Scholar
  36. 36.
    Fausti F, Di Agostino S, Sacconi A, Strano S, Blandino G (2012) Hippo and rassf1a pathways: a growing affair. Mol Biol Int 2012:307628CrossRefGoogle Scholar
  37. 37.
    Arijs I, Li K, Toedter G, Quintens R, Van Lommel L, Van Steen K, Leemans P, De Hertogh G, Lemaire K, Ferrante M, Schnitzler F, Thorrez L, Ma K, Song XY, Marano C, Van Assche G, Vermeire S, Geboes K, Schuit F, Baribaud F, Rutgeerts P (2009) Mucosal gene signatures to predict response to infliximab in patients with ulcerative colitis. Gut 58(12):1612–1619CrossRefGoogle Scholar
  38. 38.
    Arijs I, Quintens R, Van Lommel L, Van Steen K, De Hertogh G, Lemaire K, Schraenen A, Perrier C, Van Assche G, Vermeire S, Geboes K, Schuit F, Rutgeerts P (2010) Predictive value of epithelial gene expression profiles for response to infliximab in Crohn's disease. Inflamm Bowel Dis 16(12):2090–2098CrossRefGoogle Scholar

Copyright information

© Arányi Lajos Foundation 2019

Authors and Affiliations

  1. 1.Department of Anatomy, Histology and Embryology, School of MedicineUniversity of PatrasRionGreece
  2. 2.Department of PathologyGeneral Hospital Agios AndreasPatrasGreece

Personalised recommendations