Up-Regulation of the Alpha Prime Subunit of Protein Kinase CK2 as a Marker of Fast Proliferation in GL261 Cultured Cells

  • Lucía Villamañan
  • Estefanía Alcaraz
  • Lorenzo A. Pinna
  • Maria Ruzzene
  • Emilio Itarte
  • Carles Arús
  • Maria Plana
  • Ana Paula Candiota
Short Communication


Glioblastoma (GB) is the most prevalent malignant primary brain tumor in adults. The preclinical glioblastoma model GL261 is widely used for investigating new therapeutic strategies. GL261 cultured cells are used for assessing preliminary in vitro data for this model although very little is known about the molecular characteristics of this cell line. Protein Kinase CK2 is a pleiotropic serine-threonine kinase and its inhibition may be a promising therapeutic strategy for GB treatment. In our group we follow treatment response with CK2 inhibitors in vivo using the GL261 murine model. For that, it is of our interest to assess the differential expression of α, α’, β CK2 subunits as well as CK2 activity in the GL261 GB model. CK2α’ expression changed along the growth curve of GL261 cells, undergoing downregulation in postconfluent phase cells, whereas CK2α and CK2β expression remained essentially unchanged. Furthermore, a marked decrease in CK2 activity in slowly proliferating postconfluent phase GL261 cells was observed. Finally, CK2α’ expression in orthotopic GL261 tumors was intermediate between CK2α’ expression found in cultured cells in exponentially growing or postconfluent phase, reflecting the heterogeneous nature of GL261 tumours growing in vivo. The results obtained suggest that, in the GL261 cell line, CK2α’ could play a specific role in highly proliferative cells. Also, the decrease in CK2 activity in slowly proliferating GL261 cells could imply a differential susceptibility to subunit-specific CK2 inhibitors in this cell line, although further studies are needed to confirm this hypothesis.


Cell cycle GL261 glioma Cyclin D1 Preclinical brain tumour model CK2 alpha prime 



Casein Kinase 2




Ethylenediaminetetraacetic acid


Exponential phase




Postconfluent phase


Phosphate buffered saline


phenylmethylsulfonyl fluoride


Polyvinylidene Difluoride


sodium dodecyl sulfate polyacrylamide gel electrophoresis


Tris-buffered saline



Time allocation in the joint NMR facility of UAB and CIBER-BBN, Unit 25 of NANBIOSIS, for MRI follow-up of GL261 murine tumour evolution, is gratefully acknowledged.

Author’s Contributions

Conception and design, A.C., C.A., E.A., E.I. and M.P.; analysis and interpretation, L.V.; Writing-Drafting, L.V., A.C: and C.A.; Revising, L.P and M.R..; Supervision, A.C. and C.A.; Guarantor: A.C.


Lucia Villamañan held a PIF predoctoral fellowship from Universitat Autònoma de Barcelona. This work was funded by the Ministerio de Economía y Competitividad (MINECO) grant MOLIMAGLIO (SAF2014–52332-R). Also funded by Centro de Investigación Biomédica en Red- Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, (, an initiative of the Instituto de Salud Carlos III (Spain) co-funded by EU Fondo Europeo de Desarrollo Regional (FEDER). Also funded by AIRC IG 18756 to LAP.

Compliance with Ethical Standards

Competing Interests

The authors declare that they have no competing interests.

Ethical Approval

All applicable regional and national guidelines for the care and use of animals were followed. The studies described in this paper were approved by the local ethics committee Comissió d’Ètica en Experimentació Animal i Humana (CEEAH) ( (protocol CEEAH-3665).

Consent for Publication

Not applicable.


  1. 1.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996. CrossRefGoogle Scholar
  2. 2.
    Di Maira G, Salvi M, Arrigoni G, Marin O, Sarno S, Brustolon F, Pinna LA, Ruzzene M (2005) Protein kinase CK2 phosphorylates and upregulates Akt/PKB. Cell Death Differ 12(6):668–677. CrossRefGoogle Scholar
  3. 3.
    Rowse AL, Gibson SA, Meares GP, Rajbhandari R, Nozell SE, Dees KJ, Hjelmeland AB, McFarland BC, Benveniste EN (2017) Protein kinase CK2 is important for the function of glioblastoma brain tumor initiating cells. J Neuro-Oncol 132(2):219–229. CrossRefGoogle Scholar
  4. 4.
    Stacey DW (2003) Cyclin D1 serves as a cell cycle regulatory switch in actively proliferating cells. Current opinion in cell biology 15 (2):158-163.
  5. 5.
    Ferrer-Font L, Alcaraz E, Plana M, Candiota AP, Itarte E, Arus C (2016) Protein kinase CK2 content in GL261 mouse glioblastoma. Pathol Oncol Res 22(3):633–637. CrossRefGoogle Scholar
  6. 6.
    Ferrer-Font L, Villamanan L, Arias-Ramos N, Vilardell J, Plana M, Ruzzene M, Pinna LA, Itarte E, Arus C, Candiota AP (2017) Targeting protein kinase CK2: evaluating CX-4945 potential for GL261 glioblastoma therapy in immunocompetent mice. Pharmaceuticals 10(1).
  7. 7.
    Orlandini M, Semplici F, Ferruzzi R, Meggio F, Pinna LA, Oliviero S (1998) Protein kinase CK2alpha' is induced by serum as a delayed early gene and cooperates with Ha-ras in fibroblast transformation. J Biol Chem 273 (33):21291–21297.
  8. 8.
    Ortega-Martorell S, Lisboa PJG, Vellido A, Simoes RV, Pumarola M, Julià-Sapé M, Arús C (2012) Convex Non-Negative Matrix Factorization for Brain Tumor Delimitation from MRSI Data. PLoS One 7 (10):e47824.
  9. 9.
    Janeczko M, Orzeszko A, Kazimierczuk Z, Szyszka R, Baier A (2012) CK2alpha and CK2alpha' subunits differ in their sensitivity to 4,5,6,7-tetrabromo- and 4,5,6,7-tetraiodo-1H-benzimidazole derivatives. Eur J Med Chem 47(1):345–350. CrossRefGoogle Scholar
  10. 10.
    Bollacke A, Nienberg C, Borgne ML, Jose J (2016) Toward selective CK2alpha and CK2alpha' inhibitors: development of a novel whole-cell kinase assay by autodisplay of catalytic CK2alpha'. J Pharm Biomed Anal 121:253–260. CrossRefGoogle Scholar

Copyright information

© Arányi Lajos Foundation 2019

Authors and Affiliations

  1. 1.Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Edifici CsUniversitat Autònoma de BarcelonaBarcelonaSpain
  2. 2.Department of Biomedical SciencesUniversity of Padova, and CNR Institute of NeurosciencesPadovaItaly
  3. 3.Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)Cerdanyola del Vallès, BarcelonaSpain
  4. 4.Institut de Biotecnologia i de Biomedicina (IBB)Universitat Autònoma de BarcelonaBarcelonaSpain

Personalised recommendations