Advertisement

Pathology & Oncology Research

, Volume 25, Issue 2, pp 461–469 | Cite as

Unsupervised Clustering of Immunohistochemical Markers to Define High-Risk Endometrial Cancer

  • Enora LaasEmail author
  • Marcos Ballester
  • Annie Cortez
  • Olivier Graesslin
  • Emile Daraï
Original Article

Abstract

Considerable heterogeneity exists in outcomes of early endometrial cancer (EC) according to the type but also the histological grading. Our goal was to describe the immunohistochemical profiles of type I EC according to grades and type II EC, to identify groups of interacting proteins using principal component analysis (PCA) and unsupervised clustering. We studied 13 immunohistochemical markers (steroid receptors, pro/anti-apoptotic proteins, metalloproteinases (MMP) and tissue inhibitor of metalloproteinase (TIMP), and CD44 isoforms known for their role in endometrial pathology. Co-expressed proteins associated with the type, grade and outcome of EC were determined by PCA and unsupervised clustering. PCA identified three functional groups of proteins from 43 tissue samples (38 type I and 5 type II EC): the first was characterized by p53 expression; the second by MMPs, bcl-2, PR B and CD44v6; and the third by ER alpha, PR A, TIMP-2 and CD44v3. Unsupervised clustering found two main clusters of proteins, with both type I grade 3 and type II EC exhibiting the same cluster profile. PCA and unsupervised clustering of immunohistochemical markers in EC contribute to a better comprehension and classification of the disease.

Keywords

Endometrial cancer High-risk endometrial cancer Immunohistochemistry Unsupervised clustering Principal component analysis 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. For this type of study formal consent is not required.

References

  1. 1.
    Prat J (2004) Prognostic parameters of endometrial carcinoma. Hum Pathol 35:649–662CrossRefGoogle Scholar
  2. 2.
    Pansare V, Munkarah AR, Schimp V et al (2007) Increased expression of hypoxia-inducible factor 1alpha in type I and type II endometrial carcinomas. Mod Pathol 20:35–43.  https://doi.org/10.1038/modpathol.3800718 CrossRefGoogle Scholar
  3. 3.
    Llobet D, Pallares J, Yeramian A et al (2009) Molecular pathology of endometrial carcinoma: practical aspects from the diagnostic and therapeutic viewpoints. J Clin Pathol 62:777–785.  https://doi.org/10.1136/jcp.2008.056101 CrossRefGoogle Scholar
  4. 4.
    Lax SF (2004) Molecular genetic pathways in various types of endometrial carcinoma: from a phenotypical to a molecular-based classification. Virchows Arch 444:213–223.  https://doi.org/10.1007/s00428-003-0947-3 CrossRefGoogle Scholar
  5. 5.
    Colombo N, Preti E, Landoni F et al (2011) Endometrial cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 22(Suppl 6):vi35–vi39.  https://doi.org/10.1093/annonc/mdr374 Google Scholar
  6. 6.
    Ballester M, Dubernard G, Lécuru F et al (2011) Detection rate and diagnostic accuracy of sentinel-node biopsy in early stage endometrial cancer: a prospective multicentre study (SENTI-ENDO). Lancet Oncol 12:469–476.  https://doi.org/10.1016/S1470-2045(11)70070-5 CrossRefGoogle Scholar
  7. 7.
    Nugent EK, Bishop EA, Mathews CA et al (2012) Do uterine risk factors or lymph node metastasis more significantly affect recurrence in patients with endometrioid adenocarcinoma? Gynecol Oncol 125:94–98.  https://doi.org/10.1016/j.ygyno.2011.11.049 CrossRefGoogle Scholar
  8. 8.
    Voss MA, Ganesan R, Ludeman L et al (2012) Should grade 3 endometrioid endometrial carcinoma be considered a type 2 cancer-a clinical and pathological evaluation. Gynecol Oncol 124:15–20.  https://doi.org/10.1016/j.ygyno.2011.07.030 CrossRefGoogle Scholar
  9. 9.
    Alvarez T, Miller E, Duska L, Oliva E (2012) Molecular profile of grade 3 endometrioid endometrial carcinoma: is it a type I or type II endometrial carcinoma? Am J Surg Pathol 36:753–761.  https://doi.org/10.1097/PAS.0b013e318247b7bb CrossRefGoogle Scholar
  10. 10.
    Zannoni GF, Vellone VG, Arena V et al (2010) Does high-grade endometrioid carcinoma (grade 3 FIGO) belong to type I or type II endometrial cancer? A clinical–pathological and immunohistochemical study. Virchows Arch 457:27–34.  https://doi.org/10.1007/s00428-010-0939-z CrossRefGoogle Scholar
  11. 11.
    Poncelet C, Walker F, Madelenat P et al (2001) Expression of CD44 standard and isoforms V3 and V6 in uterine smooth muscle tumors: a possible diagnostic tool for the diagnosis of leiomyosarcoma. Hum Pathol 32:1190–1196CrossRefGoogle Scholar
  12. 12.
    Laas E, Ballester M, Cortez A et al (2014) Supervised clustering of immunohistochemical markers to distinguish atypical and non-atypical endometrial hyperplasia. Gynecol Endocrinol:1–4.  https://doi.org/10.3109/09513590.2014.989981
  13. 13.
    Laas E, Ballester M, Cortez A et al (2014) Supervised clustering of immunohistochemical markers to distinguish atypical endometrial hyperplasia from grade 1 endometrial cancer. Gynecol Oncol.  https://doi.org/10.1016/j.ygyno.2014.02.018
  14. 14.
    Zhang G, Wu L, Li B et al (2013) Retrospective analysis of prognostic variables and clinical outcomes in surgically staged intermediate risk endometrial carcinoma. Eur J Obstet Gynecol Reprod Biol 169:309–316.  https://doi.org/10.1016/j.ejogrb.2013.02.025 CrossRefGoogle Scholar
  15. 15.
    Fukuda K, Mori M, Uchiyama M et al (1998) Prognostic significance of progesterone receptor immunohistochemistry in endometrial carcinoma. Gynecol Oncol 69:220–225.  https://doi.org/10.1006/gyno.1998.5023 CrossRefGoogle Scholar
  16. 16.
    Singh P, Smith CL, Cheetham G et al (2008) Serous carcinoma of the uterus-determination of HER-2/neu status using immunohistochemistry, chromogenic in situ hybridization, and quantitative polymerase chain reaction techniques: its significance and clinical correlation. Int J Gynecol Cancer 18:1344–1351.  https://doi.org/10.1111/j.1525-1438.2007.01181.x CrossRefGoogle Scholar
  17. 17.
    Giangrande PH, McDonnell DP (1999) The a and B isoforms of the human progesterone receptor: two functionally different transcription factors encoded by a single gene. Recent Prog Horm Res 54:291–313 discussion 313-314Google Scholar
  18. 18.
    Wik E, Ræder MB, Krakstad C et al (2013) Lack of estrogen receptor-α is associated with epithelial-Mesenchymal transition and PI3K alterations in endometrial carcinoma. Clin Cancer Res.  https://doi.org/10.1158/1078-0432.CCR-12-3039
  19. 19.
    Jongen V, Briët J, de Jong R et al (2009) Expression of estrogen receptor-alpha and -beta and progesterone receptor-a and -B in a large cohort of patients with endometrioid endometrial cancer. Gynecol Oncol 112:537–542.  https://doi.org/10.1016/j.ygyno.2008.10.032 CrossRefGoogle Scholar
  20. 20.
    Lapi Nska-Szumczyk S, Supernat A, Majewska H et al (2014) HER2-positive endometrial cancer subtype carries poor prognosis. Clin Transl Sci.  https://doi.org/10.1111/cts.12207
  21. 21.
    Hanekamp EE, Gielen SC, Smid-Koopman E et al (2003) Consequences of loss of progesterone receptor expression in development of invasive endometrial cancer. Clin Cancer Res 9:4190–4199Google Scholar
  22. 22.
    Saegusa M, Okayasu I (2000) Changes in expression of estrogen receptors alpha and beta in relation to progesterone receptor and pS2 status in normal and malignant endometrium. Jpn J Cancer Res 91:510–518CrossRefGoogle Scholar
  23. 23.
    Sho T, Hachisuga T, Nguyen TT et al (2014) Expression of estrogen receptor-α as a prognostic factor in patients with uterine serous carcinoma. Int J Gynecol Cancer 24:102–106.  https://doi.org/10.1097/IGC.0000000000000029 CrossRefGoogle Scholar
  24. 24.
    Soslow RA, Shen PU, Chung MH et al (2000) Cyclin D1 expression in high-grade endometrial carcinomas--association with histologic subtype. Int J Gynecol Pathol 19:329–334CrossRefGoogle Scholar
  25. 25.
    Vang R, Whitaker BP, Farhood AI et al (2001) Immunohistochemical analysis of clear cell carcinoma of the gynecologic tract. Int J Gynecol Pathol 20:252–259CrossRefGoogle Scholar
  26. 26.
    Ansink AC, Cross PA, Scorer P et al (1997) The hormonal receptor status of uterine carcinosarcomas (mixed müllerian tumours): an immunohistochemical study. J Clin Pathol 50:328–331CrossRefGoogle Scholar
  27. 27.
    Demopoulos RI, Mesia AF, Mittal K, Vamvakas E (1999) Immunohistochemical comparison of uterine papillary serous and papillary endometrioid carcinoma: clues to pathogenesis. Int J Gynecol Pathol 18:233–237CrossRefGoogle Scholar
  28. 28.
    Reid-Nicholson M, Iyengar P, Hummer AJ et al (2006) Immunophenotypic diversity of endometrial adenocarcinomas: implications for differential diagnosis. Mod Pathol 19:1091–1100.  https://doi.org/10.1038/modpathol.3800620 CrossRefGoogle Scholar
  29. 29.
    Tashiro H, Isacson C, Levine R et al (1997) p53 gene mutations are common in uterine serous carcinoma and occur early in their pathogenesis. Am J Pathol 150:177–185Google Scholar
  30. 30.
    Matias-Guiu X, Davidson B (2014) Prognostic biomarkers in endometrial and ovarian carcinoma. Virchows Arch 464:315–331.  https://doi.org/10.1007/s00428-013-1509-y CrossRefGoogle Scholar
  31. 31.
    Alkushi A, Lim P, Coldman A et al (2004) Interpretation of p53 immunoreactivity in endometrial carcinoma: establishing a clinically relevant cut-off level. Int J Gynecol Pathol 23:129–137CrossRefGoogle Scholar
  32. 32.
    Dupont J, Wang X, Marshall DS et al (2004) Wilms tumor gene (WT1) and p53 expression in endometrial carcinomas: a study of 130 cases using a tissue microarray. Gynecol Oncol 94:449–455.  https://doi.org/10.1016/j.ygyno.2004.05.014 CrossRefGoogle Scholar
  33. 33.
    Mitselou A, Ioachim E, Kitsou E et al (2003) Immunohistochemical study of apoptosis-related Bcl-2 protein and its correlation with proliferation indices (Ki67, PCNA), tumor suppressor genes (p53, pRb), the oncogene c-erbB-2, sex steroid hormone receptors and other clinicopathological features, in normal, hyperplastic and neoplastic endometrium. In Vivo 17:469–477Google Scholar
  34. 34.
    Zhang M, Zhang P, Zhang C et al (2009) Prognostic significance of Bcl-2 and Bax protein expression in the patients with oral squamous cell carcinoma. J Oral Pathol Med 38:307–313.  https://doi.org/10.1111/j.1600-0714.2008.00689.x CrossRefGoogle Scholar
  35. 35.
    Miturski R, Semczuk A, Tomaszewski J, Jakowicki J (1998) Bcl-2 protein expression in endometrial carcinoma: the lack of correlation with p53. Cancer Lett 133:63–69CrossRefGoogle Scholar
  36. 36.
    Zhang R, He Y, Zhang X et al (2012) Estrogen receptor-regulated microRNAs contribute to the BCL2/BAX imbalance in endometrial adenocarcinoma and precancerous lesions. Cancer Lett 314:155–165.  https://doi.org/10.1016/j.canlet.2011.09.027 CrossRefGoogle Scholar
  37. 37.
    Zheng W, Cao P, Zheng M et al (1996) p53 overexpression and bcl-2 persistence in endometrial carcinoma: comparison of papillary serous and endometrioid subtypes. Gynecol Oncol 61:167–174.  https://doi.org/10.1006/gyno.1996.0120 CrossRefGoogle Scholar
  38. 38.
    Moriyama T, Littell RD, Debernardo R et al (2004) BAG-1 expression in normal and neoplastic endometrium. Gynecol Oncol 94:289–295.  https://doi.org/10.1016/j.ygyno.2004.04.026 CrossRefGoogle Scholar
  39. 39.
    Cancer Genome Atlas Research Network, Kandoth C, Schultz N et al (2013) Integrated genomic characterization of endometrial carcinoma. Nature 497:67–73.  https://doi.org/10.1038/nature12113 CrossRefGoogle Scholar
  40. 40.
    Hussein YR, Weigelt B, Levine DA et al (2014) Clinicopathological analysis of endometrial carcinomas harboring somatic POLE exonuclease domain mutations. Mod Pathol.  https://doi.org/10.1038/modpathol.2014.143
  41. 41.
    Uzan C, Cortez A, Dufournet C et al (2004) Eutopic endometrium and peritoneal, ovarian and bowel endometriotic tissues express a different profile of matrix metalloproteinases-2, −3 and −11, and of tissue inhibitor metalloproteinases-1 and -2. Virchows Arch 445:603–609.  https://doi.org/10.1007/s00428-004-1117-y CrossRefGoogle Scholar
  42. 42.
    Graesslin O, Cortez A, Uzan C et al (2006) Endometrial tumor invasiveness is related to metalloproteinase 2 and tissue inhibitor of metalloproteinase 2 expressions. Int J Gynecol Cancer 16:1911–1917.  https://doi.org/10.1111/j.1525-1438.2006.00717.x CrossRefGoogle Scholar
  43. 43.
    Ferguson SE, Olshen AB, Viale A et al (2004) Gene expression profiling of tamoxifen-associated uterine cancers: evidence for two molecular classes of endometrial carcinoma. Gynecol Oncol 92:719–725.  https://doi.org/10.1016/j.ygyno.2003.10.038 CrossRefGoogle Scholar
  44. 44.
    Moser PL, Kieback DG, Hefler L et al (1999) Immunohistochemical detection of matrix metalloproteinases (MMP) 1 and 2, and tissue inhibitor of metalloproteinase 2 (TIMP 2) in stage IB cervical cancer. Anticancer Res 19:4391–4393Google Scholar
  45. 45.
    Wang F-Q, So J, Reierstad S, Fishman DA (2005) Matrilysin (MMP-7) promotes invasion of ovarian cancer cells by activation of progelatinase. Int J Cancer 114:19–31.  https://doi.org/10.1002/ijc.20697 CrossRefGoogle Scholar
  46. 46.
    Katsura M, Furumoto H, Nishimura M et al (1998) Overexpression of CD44 variants 6 and 7 in human endometrial cancer. Gynecol Oncol 71:185–189.  https://doi.org/10.1006/gyno.1998.5169 CrossRefGoogle Scholar
  47. 47.
    Tempfer C, Haeusler G, Kaider A et al (1998) The prognostic value of CD44 isoform expression in endometrial cancer. Br J Cancer 77:1137CrossRefGoogle Scholar
  48. 48.
    Ayhan A, Tok EC, Bildirici I, Ayhan A (2001) Overexpression of CD44 variant 6 in human endometrial cancer and its prognostic significance. Gynecol Oncol 80:355–358.  https://doi.org/10.1006/gyno.2000.6014 CrossRefGoogle Scholar
  49. 49.
    Hoshimoto K, Yamauchi N, Takazawa Y et al (2003) CD44 variant 6 in endometrioid carcinoma of the uterus: its expression in the adenocarcinoma component is an independent prognostic marker. Pathol Res Pract 199:71–77CrossRefGoogle Scholar
  50. 50.
    Gun BD, Bahadir B, Bektas S et al (2012) Clinicopathological significance of fascin and CD44v6 expression in endometrioid carcinoma. Diagn Pathol 7:15CrossRefGoogle Scholar
  51. 51.
    Yeung KY, Ruzzo WL (2001) Principal component analysis for clustering gene expression data. Bioinformatics 17:763–774CrossRefGoogle Scholar
  52. 52.
    Wang Y, Ma X, Xi C et al (2013) Correlation between estrogen receptor status and clinicopathologic parameters in endometrial cancer: a comparative study by immunohistochemistry using different scoring systems. Zhonghua Bing Li Xue Za Zhi 42:509–514Google Scholar
  53. 53.
    Qureshi A, Pervez S (2010) Allred scoring for ER reporting and it’s impact in clearly distinguishing ER negative from ER positive breast cancers. J Pak Med Assoc 60:350–353Google Scholar

Copyright information

© Arányi Lajos Foundation 2017

Authors and Affiliations

  • Enora Laas
    • 1
    • 2
    Email author
  • Marcos Ballester
    • 1
    • 2
    • 3
  • Annie Cortez
    • 2
    • 4
  • Olivier Graesslin
    • 5
  • Emile Daraï
    • 1
    • 2
    • 3
  1. 1.Service de Gynécologie-Obstétrique, Hôpital TenonParisFrance
  2. 2.Institut Universitaire de CancérologieUniversité Pierre et Marie CurieParis 6France
  3. 3.UMRS-938Université Pierre et Marie CurieParis 6France
  4. 4.Service d’Anatomie Pathologie, Hôpital TenonParisFrance
  5. 5.Service de gynécologie-obstétrique, Hôpital Alix de ChampagneReimsFrance

Personalised recommendations