Advertisement

Pathology & Oncology Research

, Volume 25, Issue 1, pp 131–136 | Cite as

Advantages of 18F FDG-PET/CT over Conventional Staging for Sarcoma Patients

  • Zsuzsanna NémethEmail author
  • Katalin Boér
  • Katalin Borbély
Original Article
  • 116 Downloads

Abstract

The effective management of patients with sarcomas requires accurate diagnosis and staging. Imaging, such as ultrasonography (US), computed tomography (CT), magnetic resonance imaging (MRI) are the most freqently used methods for the detection of the lesion location, size, morphology and structural changes to adjacent tissues; however, these modalities provide little information about tumour biology. MRI is a robust and useful modality in tumour staging of sarcomas, however metabolic-fluorodeoxyglucose positron emission tomography/ computer tomography (18F–FDG PET/CT) provides greater accuracy to overall staging in combination with MRI [1]. The advantages of 18F–FDG PET/CT method compared with CT and MRI is that it provides a whole body imaging, maps the viability of the tumour or the metabolic activity of the tissue. Additionally, PET detects the most agressive part of the tumour, demonstrates the biological behaviour of the tumour and therefore has a predictive value. Little data ara available on the role of 18F–FDG PET/CT in the management of sarcomas. The present manuscript aims to provide a review of the major indications of 18F–FDG PET/CT for diagnosis, staging, restaging and monitoring response to therapy and to compare its usefulness with the conventional imaging modalities in the management of patients with sarcomas.

Keywords

18F–FDG pet/Ct Standardized uptake value Imaging modalities Sarcoma 

References

  1. 1.
    Faizi NA, Thulkar S, Sharma R et al (2012) Magnetic resonance imaging and positron emission tomography-computed tomography evaluation of soft-tissue sarcoma with surgical and histopathological corelation. Indian J Nucl Med 27(4):213–220CrossRefGoogle Scholar
  2. 2.
    Demetri GD, Antonia S, Benjamin RS et al (2010) Soft-tissue sarcoma. J Natl Compr Cancer Netw 8(6):630–674CrossRefGoogle Scholar
  3. 3.
    Stiller CA, Trama A, Serraino D et al (2013) Descriptive epidemiology of sarcomas in Europe: report from the RARECARE project. Eur J Cancer 49(3):684–695.  https://doi.org/10.1016/j.ejca.2012.09.011 CrossRefGoogle Scholar
  4. 4.
    Guillou L, Coindre JM, Bonichon F et al (1997) Comparative study of the National Cancer Institute and French Federation of Cancer Centers Sarcoma Group grading systems in a population of 410 adult patients with soft-tissue sarcoma. J Clin Oncol 15:350–362CrossRefGoogle Scholar
  5. 5.
    von Mehren M, Randall LR, Benjamin RS, et al Soft Tissue Sarcoma. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines). Version 1.2017 https://www.nccn.org/professionals/physician_gls/pdf/sarcoma.pdf
  6. 6.
    The European Society for Medical Oncology (ESMO) Sarcoma Network Working Group (2014) Soft-tissue and visceral sarcomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 25(3):102–112.  https://doi.org/10.1093/annonc/mdu254 CrossRefGoogle Scholar
  7. 7.
    Borbély K (1999) A pozitron emissziós tomográfia helye a korszerű betegvezetésben. Orv Hetil 140:171–178Google Scholar
  8. 8.
    Borbély K, Szilágyi I, Kásler M (2011) IV. PET/CT Multidiszciplináris Nemzeti Konszenzus Konferencia Állásfoglalása. Mag Onkol 55(2):117–127Google Scholar
  9. 9.
    Wang X, Jacobs M, Fayad L (2011) Therapeutic response in musculosceletal soft-tissue sarcomas: evaluation by magnetic resonance imaging. NMR Biomed 24(6):750–763CrossRefGoogle Scholar
  10. 10.
    Lin X, Davion S, Bertsch EC, Omar I, Nayar R, Laskin WB (2016) FNCLCC grading of soft-tissue sarcomas on needle core biopsies using surrogate markers. Hum Pathol 56:147 PubMedView ArticleGoogle ScholarCrossRefGoogle Scholar
  11. 11.
    Schwarzbach MH, Dimitrakopoulou-Strauss A, Willeke F et al (2000) 18-F fluorodeoxy-glucose positron emission tomography imaging in soft-tissue sarcomas. Ann Surg 231:380–386CrossRefGoogle Scholar
  12. 12.
    Volker T, Denecke T, Steffen I et al (2007) Positron emission tomography for staging of pediatric sarcoma patients: results of a prospective multicenter trial. J Clin Oncol 25(34):5435–5441CrossRefGoogle Scholar
  13. 13.
    Aoki J, Watanabe H, Shinozaki et al (2001) T FDG PET of primary benign and malignant bone tumours: standardized uptake value in 52 lesions. Radiology 219:774–777Google Scholar
  14. 14.
    Borbely K, Szilágyi I, Kasler M (2011) IV. PET/CT Multidiszciplinaris Nemzeti Konszenzus Konferencia Allasfoglalasa (2011) Magyar Onkológia 55 (2):117–127Google Scholar
  15. 15.
    Franzius C, Sciuk J, Daldrup-Link HE et al (2000) FDG-PET for detection of pulmonary metastases from malignant primary bone tumours: comparison with bone scintigraphy. Eur J Nucl Med 27:1305–1311CrossRefGoogle Scholar
  16. 16.
    O’Sullivan GJ, Carty FL, Cronin CG (2015) Imaging of bone metastasis: an update. World J Radiol 7(8):202–211CrossRefGoogle Scholar
  17. 17.
    Liangjun R, Zhen Z, Zhifeng C et al (2016) 18F-Labeled NaF PET-CT in detection of bone metastases in patients with preoperative lung cancer medicine. Medicine 95(16):1–6Google Scholar
  18. 18.
    Sampath SC, Sampath SC, Mosci C et al (2015) Detection of osseous metastasis by 18F NaF/18F F-FDG PET/CT versus CT alone. Clin Nucl Med 40(3):e173–e177CrossRefGoogle Scholar
  19. 19.
    Schwab JH, Boland PJ, Antonescu C et al (2007) Spinal metastases from myxoid liposarcoma warrant screening with magnetic resonance imaging. Cancer 110:1815–1821CrossRefGoogle Scholar
  20. 20.
    Adler LP, Blair HF, Makley JT et al (1991) Noninvasive grading of musculoskeletal tumours using PET. J Nucl Med 32(8):1508–1512Google Scholar
  21. 21.
    Ioannidis JP, Lau J (2003) 18F-FDG PET for the diagnosis and grading of soft-tissue sarcoma: a meta-analysis. J Nucl Med 44:717–724Google Scholar
  22. 22.
    Kwee TC, Cheng G, Lam MG, Basu S, Alavi A (2013) SUV of 2.5 should not be embraced as a magic threshold for separating benign from malignant lesions. Eur J Nucl Med Mol Imaging 40(10):1475–1477CrossRefGoogle Scholar
  23. 23.
    Hawkins DS, Schuetze SM, Butrynski JE et al (2005) [18F] Fluorodeoxyglucose positron emission tomography predicts outcome for Ewing sarcoma family of tumours. J Clin Oncol 23:8828–8834CrossRefGoogle Scholar
  24. 24.
    Schuetze SM, Rubin BP, Vernon C et al (2005) Use of positron emission tomography in localized extremity soft-tissue sarcoma treated with neoadjuvant chemotherapy. Cancer 103:339–348CrossRefGoogle Scholar
  25. 25.
    Evilevitch V, Weber WA, Tap WD et al (2008) Reduction of glucose metabolic activity is more accurate than change in size at predicting histo-pathologic response to neoadjuvant therapy in high-grade soft-tissue sarcomas. Clin Cancer Res 14:715–720CrossRefGoogle Scholar
  26. 26.
    Machulla HJ, Blocher A, Kuntzsch M et al (2000) Simplified labeling approach for synthesizing 3′-deoxy-3′-[18F] fluorothymidine ([18F] FLT). J. Radioanal. Nucl. Chem. 243(3):843–846CrossRefGoogle Scholar
  27. 27.
    Tateishi U, Kawai A, Hirokazu C et al (2011) PET/CT allows stratification of responders to neoadjuvant chemotherapy for high grade sarcoma: a prospective study. Clin Nucl Med 36(7):526–532Google Scholar
  28. 28.
    Enzinger FM (1970) Epithelioid sarcoma: a sarcoma stimulating a granuloma or a carcinoma. Cancer 26:1029–1041CrossRefGoogle Scholar
  29. 29.
    Sanghera B, Wong WL, Sonoda L et al (2014) FLT PET-CT in evaluation of treatment response. Indian J Nucl Med Apr-Jun 29(2):65–73CrossRefGoogle Scholar
  30. 30.
    Buck AK, Halter G, Schirrmeister H et al (2003) Imaging proliferation in lung tumours with PET: 18F-FLT versus 18F-FDG. J Nucl Med 44:1426–1431Google Scholar
  31. 31.
    Buck AK, Bommer M, Stilgenbauer S et al (2006) Molecular imaging of proliferation in malignant lymphoma. Cancer Res 66:11055–11061CrossRefGoogle Scholar
  32. 32.
    Herrmann K, Buck AK, Schuster T, Junger A, Wieder HA, Graf N et al (2011) Predictive value of initial 18F-FLT uptake in patients with aggressive non-Hodgkin lymphoma receiving R-CHOP treatment. J Nucl Med 52(5):690–696CrossRefGoogle Scholar
  33. 33.
    Yamamoto Y, Ono Y, Aga F et al (2012) Correlation of 18 F-FLT uptake with tumour grade and Ki-67 immunohistochemistry in patients with newly diagnosed and recurrent gliomas. J Nucl Med 53(12):1911–1915CrossRefGoogle Scholar
  34. 34.
    Contractor KB, Kenny LM, Stebbing J, Rosso L, Ahmad R, Jacob J et al (2011) [18F]-3′deoxy-3′-fluorothymidine positron emission tomography and breast cancer response to docetaxel. Clin Cancer Res 17(24):7664–7672Google Scholar
  35. 35.
    Buck AK, Hermann K, Büschenfelde CM et al (2008) Imaging bone and soft-tissue tumours with the proliferation marker [18F] fluorodeoxythymidine. Clin. Cancer Res. 14(10):2970–2977CrossRefGoogle Scholar
  36. 36.
    Benz MR, Czernin J, Allen-Auerbach MS (2012) 3′-deoxy-3′-[18F] fluorothymidine positron emission tomography for response assessment in soft-tissue sarcoma: a pilot study to correlate imaging findings with tissue thymidine kinase 1 and Ki-67 activity and histopathologic response HHS Author Manuscript Cancer 118 (12):3135–3144Google Scholar
  37. 37.
    Been LB, Suurmeijer AJ, Elsinga PH, Jager PL, van Ginkel RJ, Hoekstra HJ (2007) 18F-fluorodeoxythymidine PET for evaluating the response to hyperthermic isolated limb perfusion for locally advanced soft-tissue sarcomas. J Nucl Med 48:367–372Google Scholar
  38. 38.
    Jerabek PA, Patrick TB, Kilbourn MR, Dischino DD, Welch MJ (1986) Synthesis and biodistribution of of 18F-labeled fluoronitroimidazoles: potential in vivo markers of hypoxic tissue. Int J Rad Appl Instrum Part A 37:599–605CrossRefGoogle Scholar
  39. 39.
    Rajendran JG, Wilson DC, Conrad EU et al (2003) [18F] FMISO and [18F] FDG PET imaging in soft-tissue sarcomas: correlation of hypoxia, metabolism and VEGF expression. Eur J Nucl Med Mol Imaging 30(5):695–704CrossRefGoogle Scholar
  40. 40.
    Borbely K, Zs N, Kasler M (2014) Clinical application 18F-FDG PET/CT in the treatment of sarcomas. Hung Oncol 58(1):24–31Google Scholar

Copyright information

© Arányi Lajos Foundation 2017

Authors and Affiliations

  • Zsuzsanna Németh
    • 1
    Email author
  • Katalin Boér
    • 1
  • Katalin Borbély
    • 2
  1. 1.Oncological DepartmentSzent Margit KórhazBudapestHungary
  2. 2.PET/CT Outpatient DepartmentNational Institute of OncologyBudapestHungary

Personalised recommendations