Advertisement

Pathology & Oncology Research

, Volume 25, Issue 1, pp 11–20 | Cite as

Downregulated Adhesion-Associated microRNAs as Prognostic Predictors in Childhood Osteosarcoma

  • L. E. A. Delsin
  • G. M. Roberto
  • P. F. Fedatto
  • E. E. Engel
  • C. A. Scrideli
  • L. G. Tone
  • M. S. BrassescoEmail author
Original Article

Abstract

miRNAs have been identified as key regulators of almost all cellular processes, therefore, their dysregulation is involved with several diseases, including cancer. miRNAs specifically related to the metastastic cascade are called metastamiRs and can be involved with different steps of this process, including loss of adhesion. Osteosarcoma (OS) is the most common primary malignant pediatric bone tumor that often presents metastatic disease at diagnosis; therefore, a deeper study of adhesion-associated miRNAs could shed light on its pathophysiology. Online databases were used to select four miRNAs (miR-139; miR-181b; miR-584; miR-708) predicted or validated to target proteins related to adherent junctions and focal adhesion pathways, and their expression levels and possible associations with clinical features evaluated in primary OS samples. Our results showed downregulation of miR-139-5p and miR-708-5p in OS samples compared to non-neoplastic controls. Moreover, lower expression of miR-708-5p was associated with poor overall survival and higher expression of miR-181b-5p related to worst chemotherapy response (low HUVOS level). Based on these results, we selected miR-139-5p and miR-708-5p for further functional testing. Inducing the expression of miR-139-5p diminished the clonogenic capacity of the HOS cell line, while upregulation of miR-708-5p was related to a lower cellular adhesion. In summary, this work identified new signatures of microRNA dysregulation that may serve as useful prognostic markers in this aggressive pediatric bone tumor.

Keywords

microRNAs Adhesion Osteosarcoma Metastasis 

Notes

Compliance with ethical standards

Financial support

FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo): Grant 2014/03877-3 and LEAD fellowship 2014/07117-3.

References

  1. 1.
    Gee HE, Ivan C, Calin GA, Ivan M (2014) HypoxamiRs and cancer: from biology to targeted therapy. Antioxid Redox Signal 21(8):1220–1238.  https://doi.org/10.1089/ars.2013.5639 Google Scholar
  2. 2.
    Olivieri F, Rippo MR, Procopio AD, Fazioli F (2013) Circulating inflamma-miRs in aging and age-related diseases. Front Genet 4:121.  https://doi.org/10.3389/fgene.2013.00121 Google Scholar
  3. 3.
    Schickel R, Boyerinas B, Park SM, Peter ME (2008) MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene 27(45):5959–5974.  https://doi.org/10.1038/onc.2008.274 Google Scholar
  4. 4.
    Tutar L, Tutar E, Özgür A, Tutar Y (2015) Therapeutic Targeting of microRNAs in Cancer: Future Perspectives. Drug Dev Res 76(7):382–388.  https://doi.org/10.1002/ddr.21273 Google Scholar
  5. 5.
    Hurst DR, Edmonds MD, Welch DR (2009) Metastamir: the field of metastasis-regulatory microRNA is spreading. Cancer Res 69(19):7495–7498.  https://doi.org/10.1158/0008-5472.CAN-09-2111 Google Scholar
  6. 6.
    Sengupta S, den Boon JA, Chen IH, Newton MA, Stanhope SA, Cheng YJ, Chen CJ, Hildesheim A, Sugden B, Ahlquist P (2008) MicroRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins. Proc Natl Acad Sci U S A 105(15):5874–5878.  https://doi.org/10.1073/pnas.0801130105 Google Scholar
  7. 7.
    Tavazoie SF, Alarcón C, Oskarsson T, Padua D, Wang Q, Bos PD, Gerald WL, Massagué J (2008) Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451(7175):147–152.  https://doi.org/10.1038/nature06487 Google Scholar
  8. 8.
    Gregory PA, Bracken CP, Bert AG, Goodall GJ (2008) MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle 7(20):3112–3118.  https://doi.org/10.4161/cc.7.20.6851 Google Scholar
  9. 9.
    Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449(7163):682–688.  https://doi.org/10.1038/nature06174 Google Scholar
  10. 10.
    Wang Y, Li Z, Zhao X, Zuo X, Peng Z (2016) miR-10b promotes invasion by targeting HOXD10 in colorectal cancer. Oncol Lett 12(1):488–494.  https://doi.org/10.3892/ol.2016.4628 Google Scholar
  11. 11.
    Zhu S, Wu H, Wu F, Nie D, Sheng S, Mo YY (2008) MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 18(3):350–359.  https://doi.org/10.1038/cr.2008.24 Google Scholar
  12. 12.
    Hurst DR, Edmonds MD, Scott GK, Benz CC, Vaidya KS, Welch DR (2009) Breast cancer metastasis suppressor 1 up-regulates miR-146, which suppresses breast cancer metastasis. Cancer Res 69(4):1279–1283.  https://doi.org/10.1158/0008-5472.CAN-08-3559 Google Scholar
  13. 13.
    Massagué J, Obenauf AC (2016) Metastatic colonization by circulating tumour cells. Nature 529(7586):298–306.  https://doi.org/10.1038/nature17038 Google Scholar
  14. 14.
    Talmadge JE, Fidler IJ (2010) AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res 70(14):5649–5669.  https://doi.org/10.1158/0008-5472.CAN-10-1040 Google Scholar
  15. 15.
    Nicoloso MS, Spizzo R, Shimizu M, Rossi S, Calin GA (2009) MicroRNAs--the micro steering wheel of tumour metastases. Nat Rev Cancer 9(4):293–302.  https://doi.org/10.1038/nrc2619 Google Scholar
  16. 16.
    Le XF, Merchant O, Bast RC, Calin GA (2010) The Roles of MicroRNAs in the Cancer Invasion-Metastasis Cascade. Cancer Microenviron 3(1):137–147.  https://doi.org/10.1007/s12307-010-0037-4 Google Scholar
  17. 17.
    le Sage C, Nagel R, Egan DA, Schrier M, Mesman E, Mangiola A, Anile C, Maira G, Mercatelli N, Ciafrè SA, Farace MG, Agami R (2007) Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J 26(15):3699–3708.  https://doi.org/10.1038/sj.emboj.7601790 Google Scholar
  18. 18.
    Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, Huang Y, Hu X, Su F, Lieberman J, Song E (2007) let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131(6):1109–1123.  https://doi.org/10.1016/j.cell.2007.10.054 Google Scholar
  19. 19.
    Gorlick R, Khanna C (2010) Osteosarcoma. J Bone Miner Res 25(4):683–691.  https://doi.org/10.1002/jbmr.77 Google Scholar
  20. 20.
    Kushlinskii NE, Fridman MV, Braga EA (2016) Molecular Mechanisms and microRNAs in Osteosarcoma Pathogenesis. Biochemistry (Mosc) 81(4):315–328.  https://doi.org/10.1134/S0006297916040027 Google Scholar
  21. 21.
    Ram Kumar RM, Boro A, Fuchs B (2016) Involvement and Clinical Aspects of MicroRNA in Osteosarcoma. Int J Mol Sci 17(6).  https://doi.org/10.3390/ijms17060877
  22. 22.
    Geng S, Zhang X, Chen J, Liu X, Zhang H, Xu X, Ma Y, Li B, Zhang Y, Bi Z, Yang C (2014) The tumor suppressor role of miR-124 in osteosarcoma. PLoS One 9(6):e91566.  https://doi.org/10.1371/journal.pone.0091566 Google Scholar
  23. 23.
    Zhao H, Li M, Li L, Yang X, Lan G, Zhang Y (2013) MiR-133b is down-regulated in human osteosarcoma and inhibits osteosarcoma cells proliferation, migration and invasion, and promotes apoptosis. PLoS One 8(12):e83571.  https://doi.org/10.1371/journal.pone.0083571 Google Scholar
  24. 24.
    Huang J, Gao K, Lin J, Wang Q (2014) MicroRNA-100 inhibits osteosarcoma cell proliferation by targeting Cyr61. Tumour Biol 35(2):1095–1100.  https://doi.org/10.1007/s13277-013-1146-8 Google Scholar
  25. 25.
    Wu P, Liang J, Yu F, Zhou Z, Tang J, Li K (2016) miR-145 promotes osteosarcoma growth by reducing expression of the transcription factor friend leukemia virus integration 1. Oncotarget. doi:10.18632/oncotarget.9948
  26. 26.
    Li X, Yang H, Tian Q, Liu Y, Weng Y (2014) Upregulation of microRNA-17-92 cluster associates with tumor progression and prognosis in osteosarcoma. Neoplasma 61(4):453–460.  https://doi.org/10.4149/neo_2014_056 Google Scholar
  27. 27.
    Huang G, Nishimoto K, Zhou Z, Hughes D, Kleinerman ES (2012) miR-20a encoded by the miR-17-92 cluster increases the metastatic potential of osteosarcoma cells by regulating Fas expression. Cancer Res 72(4):908–916.  https://doi.org/10.1158/0008-5472.CAN-11-1460 Google Scholar
  28. 28.
    Ma C, Zhan C, Yuan H, Cui Y, Zhang Z (2016) MicroRNA-603 functions as an oncogene by suppressing BRCC2 protein translation in osteosarcoma. Oncol Rep 35(6):3257–3264.  https://doi.org/10.3892/or.2016.4718 Google Scholar
  29. 29.
    Xu SH, Yang YL, Han SM, Wu ZH (2014) MicroRNA-9 expression is a prognostic biomarker in patients with osteosarcoma. World J Surg Oncol 12:195.  https://doi.org/10.1186/1477-7819-12-195 Google Scholar
  30. 30.
    Maire G, Martin JW, Yoshimoto M, Chilton-MacNeill S, Zielenska M, Squire JA (2011) Analysis of miRNA-gene expression-genomic profiles reveals complex mechanisms of microRNA deregulation in osteosarcoma. Cancer Genet 204(3):138–146.  https://doi.org/10.1016/j.cancergen.2010.12.012 Google Scholar
  31. 31.
    Jones KB, Salah Z, Del Mare S, Galasso M, Gaudio E, Nuovo GJ, Lovat F, LeBlanc K, Palatini J, Randall RL, Volinia S, Stein GS, Croce CM, Lian JB, Aqeilan RI (2012) miRNA signatures associate with pathogenesis and progression of osteosarcoma. Cancer Res 72(7):1865–1877.  https://doi.org/10.1158/0008-5472.CAN-11-2663 Google Scholar
  32. 32.
    Namløs HM, Meza-Zepeda LA, Barøy T, Østensen IH, Kresse SH, Kuijjer ML, Serra M, Bürger H, Cleton-Jansen AM, Myklebost O (2012) Modulation of the osteosarcoma expression phenotype by microRNAs. PLoS One 7(10):e48086.  https://doi.org/10.1371/journal.pone.0048086 Google Scholar
  33. 33.
    Lulla RR, Costa FF, Bischof JM, Chou PM, de F Bonaldo M, Vanin EF, Soares MB (2011) Identification of Differentially Expressed MicroRNAs in Osteosarcoma. Sarcoma 2011:732690.  https://doi.org/10.1155/2011/732690 Google Scholar
  34. 34.
    Wang W, Zhou X, Wei M (2015) MicroRNA-144 suppresses osteosarcoma growth and metastasis by targeting ROCK1 and ROCK2. Oncotarget 6(12):10297–10308.  10.18632/oncotarget.3305 Google Scholar
  35. 35.
    Shen L, Wang P, Yang J, Li X (2014) MicroRNA-217 regulates WASF3 expression and suppresses tumor growth and metastasis in osteosarcoma. PLoS One 9(10):e109138.  https://doi.org/10.1371/journal.pone.0109138 Google Scholar
  36. 36.
    Han K, Chen X, Bian N, Ma B, Yang T, Cai C, Fan Q, Zhou Y, Zhao TB (2015) MicroRNA profiling identifies MiR-195 suppresses osteosarcoma cell metastasis by targeting CCND1. Oncotarget 6 (11):8875-8889. doi:10.18632/oncotarget.3560
  37. 37.
    Poos K, Smida J, Nathrath M, Maugg D, Baumhoer D, Korsching E (2013) How microRNA and transcription factor co-regulatory networks affect osteosarcoma cell proliferation. PLoS Comput Biol 9(8):e1003210.  https://doi.org/10.1371/journal.pcbi.1003210 Google Scholar
  38. 38.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25(4):402–408.  https://doi.org/10.1006/meth.2001.1262 Google Scholar
  39. 39.
    Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C (2006) Clonogenic assay of cells in vitro. Nat Protoc 1(5):2315–2319.  https://doi.org/10.1038/nprot.2006.339 Google Scholar
  40. 40.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675Google Scholar
  41. 41.
    Zhang J, Yan YG, Wang C, Zhang SJ, Yu XH, Wang WJ (2015) MicroRNAs in osteosarcoma. Clin Chim Acta 444:9–17.  https://doi.org/10.1016/j.cca.2015.01.025 Google Scholar
  42. 42.
    Zhang HD, Jiang LH, Sun DW, Li J, Tang JH (2015) MiR-139-5p: promising biomarker for cancer. Tumour Biol 36(3):1355–1365.  https://doi.org/10.1007/s13277-015-3199-3 Google Scholar
  43. 43.
    Chen X, Shi K, Wang Y, Song M, Zhou W, Tu H, Lin Z (2015) Clinical value of integrated-signature miRNAs in colorectal cancer: miRNA expression profiling analysis and experimental validation. Oncotarget 6 (35):37544-37556. doi:10.18632/oncotarget.6065
  44. 44.
    Liu X, Duan B, Dong Y, He C, Zhou H, Sheng H, Gao H, Zhang X (2014) MicroRNA-139-3p indicates a poor prognosis of colon cancer. Int J Clin Exp Pathol 7(11):8046–8052Google Scholar
  45. 45.
    Yonemori M, Seki N, Yoshino H, Matsushita R, Miyamoto K, Nakagawa M, Enokida H (2016) Dual tumor-suppressors miR-139-5p and miR-139-3p targeting matrix metalloprotease 11 in bladder cancer. Cancer Sci 107(9):1233–1242.  https://doi.org/10.1111/cas.13002 Google Scholar
  46. 46.
    Ratert N, Meyer HA, Jung M, Lioudmer P, Mollenkopf HJ, Wagner I, Miller K, Kilic E, Erbersdobler A, Weikert S, Jung K (2013) miRNA profiling identifies candidate mirnas for bladder cancer diagnosis and clinical outcome. J Mol Diagn 15(5):695–705.  https://doi.org/10.1016/j.jmoldx.2013.05.008 Google Scholar
  47. 47.
    Wang Z, Ding Q, Li Y, Liu Q, Wu W, Wu L, Yu H (2016) Reanalysis of microRNA expression profiles identifies novel biomarkers for hepatocellular carcinoma prognosis. Tumour Biol.  https://doi.org/10.1007/s13277-016-5369-3
  48. 48.
    Haakensen VD, Nygaard V, Greger L, Aure MR, Fromm B, Bukholm IR, Lüders T, Chin SF, Git A, Caldas C, Kristensen VN, Brazma A, Børresen-Dale AL, Hovig E, Helland Å (2016) Subtype-specific micro-RNA expression signatures in breast cancer progression. Int J Cancer 139(5):1117–1128.  https://doi.org/10.1002/ijc.30142 Google Scholar
  49. 49.
    Rask L, Balslev E, Søkilde R, Høgdall E, Flyger H, Eriksen J, Litman T (2014) Differential expression of miR-139, miR-486 and miR-21 in breast cancer patients sub-classified according to lymph node status. Cell Oncol (Dordr) 37(3):215–227.  https://doi.org/10.1007/s13402-014-0176-6 Google Scholar
  50. 50.
    Krishnan K, Steptoe AL, Martin HC, Pattabiraman DR, Nones K, Waddell N, Mariasegaram M, Simpson PT, Lakhani SR, Vlassov A, Grimmond SM, Cloonan N (2013) miR-139-5p is a regulator of metastatic pathways in breast cancer. RNA 19(12):1767–1780.  https://doi.org/10.1261/rna.042143.113 Google Scholar
  51. 51.
    Qiu G, Lin Y, Zhang H, Wu D (2015) miR-139-5p inhibits epithelial-mesenchymal transition, migration and invasion of hepatocellular carcinoma cells by targeting ZEB1 and ZEB2. Biochem Biophys Res Commun 463(3):315–321.  https://doi.org/10.1016/j.bbrc.2015.05.062 Google Scholar
  52. 52.
    Yue S, Wang L, Zhang H, Min Y, Lou Y, Sun H, Jiang Y, Zhang W, Liang A, Guo Y, Chen P, Lv G, Zong Q, Li Y (2015) miR-139-5p suppresses cancer cell migration and invasion through targeting ZEB1 and ZEB2 in GBM. Tumour Biol 36(9):6741–6749.  https://doi.org/10.1007/s13277-015-3372-8 Google Scholar
  53. 53.
    Li Q, Liang X, Wang Y, Meng X, Xu Y, Cai S, Wang Z, Liu J, Cai G (2016) miR-139-5p Inhibits the Epithelial-Mesenchymal Transition and Enhances the Chemotherapeutic Sensitivity of Colorectal Cancer Cells by Downregulating BCL2. Sci Rep 6:27157. doi: https://doi.org/10.1038/srep27157
  54. 54.
    Watanabe K, Amano Y, Ishikawa R, Sunohara M, Kage H, Ichinose J, Sano A, Nakajima J, Fukayama M, Yatomi Y, Nagase T, Ohishi N, Takai D (2015) Histone methylation-mediated silencing of miR-139 enhances invasion of non-small-cell lung cancer. Cancer Med 4(10):1573–1582.  https://doi.org/10.1002/cam4.505 Google Scholar
  55. 55.
    Liu Y, Uzair-Ur-Rehman GY, Liang H, Cheng R, Yang F, Hong Y, Zhao C, Liu M, Yu M, Zhou X, Yin K, Chen J, Zhang J, Zhang CY, Zhi F, Chen X (2016) miR-181b functions as an oncomiR in colorectal cancer by targeting PDCD4. Protein Cell 7(10):722–734.  https://doi.org/10.1007/s13238-016-0313-2 Google Scholar
  56. 56.
    Huang S, Wang J, Li J, Luo Q, Zhao M, Zheng L, Dong X, Chen C, Che Y, Liu P, Qi J, Huang C (2016) Serum microRNA expression profile as a diagnostic panel for gastric cancer. Jpn J Clin Oncol 46(9):811–818.  https://doi.org/10.1093/jjco/hyw085 Google Scholar
  57. 57.
    Zheng Y, Lv X, Wang X, Wang B, Shao X, Huang Y, Shi L, Chen Z, Huang J, Huang P (2016) MiR-181b promotes chemoresistance in breast cancer by regulating Bim expression. Oncol Rep 35(2):683–690.  https://doi.org/10.3892/or.2015.4417 Google Scholar
  58. 58.
    Sochor M, Basova P, Pesta M, Dusilkova N, Bartos J, Burda P, Pospisil V, Stopka T (2014) Oncogenic microRNAs: miR-155, miR-19a, miR-181b, and miR-24 enable monitoring of early breast cancer in serum. BMC Cancer 14:448.  https://doi.org/10.1186/1471-2407-14-448 Google Scholar
  59. 59.
    Liu J, Shi W, Wu C, Ju J, Jiang J (2014) miR-181b as a key regulator of the oncogenic process and its clinical implications in cancer (Review). Biomed Rep 2(1):7–11.  https://doi.org/10.3892/br.2013.199 Google Scholar
  60. 60.
    Cai B, An Y, Lv N, Chen J, Tu M, Sun J, Wu P, Wei J, Jiang K, Miao Y (2013) miRNA-181b increases the sensitivity of pancreatic ductal adenocarcinoma cells to gemcitabine in vitro and in nude mice by targeting BCL-2. Oncol Rep 29(5):1769–1776.  https://doi.org/10.3892/or.2013.2297 Google Scholar
  61. 61.
    Wang J, Sai K, Chen FR, Chen ZP (2013) miR-181b modulates glioma cell sensitivity to temozolomide by targeting MEK1. Cancer Chemother Pharmacol 72(1):147–158.  https://doi.org/10.1007/s00280-013-2180-3 Google Scholar
  62. 62.
    Wang X, Chen X, Meng Q, Jing H, Lu H, Yang Y, Cai L, Zhao Y (2015) MiR-181b regulates cisplatin chemosensitivity and metastasis by targeting TGFβR1/Smad signaling pathway in NSCLC. Sci Rep 5:17618.  https://doi.org/10.1038/srep17618 Google Scholar
  63. 63.
    Shao JL, Li ZZ, Wang L, Jiao GL, Zhou ZG, Sun GD (2016) microRNA-181b promotes migration and invasion of osteosarcoma cells by targeting N-myc downstream regulated gene 2. Nan Fang Yi Ke Da Xue Xue Bao 36(3):321–326Google Scholar
  64. 64.
    Nakajima G, Hayashi K, Xi Y, Kudo K, Uchida K, Takasaki K, Yamamoto M, Ju J (2006) Non-coding MicroRNAs hsa-let-7g and hsa-miR-181b are Associated with Chemoresponse to S-1 in Colon Cancer. Cancer Genomics Proteomics 3(5):317–324Google Scholar
  65. 65.
    Hu L, Ai J, Long H, Liu W, Wang X, Zuo Y, Li Y, Wu Q, Deng Y (2016) Integrative microRNA and gene profiling data analysis reveals novel biomarkers and mechanisms for lung cancer. Oncotarget 7 (8):8441-8454. doi:10.18632/oncotarget.7264
  66. 66.
    Li X, Li D, Zhuang Y, Shi Q, Wei W, Ju X (2013) Overexpression of miR-708 and its targets in the childhood common precursor B-cell ALL. Pediatr Blood Cancer 60(12):2060–2067.  https://doi.org/10.1002/pbc.24583 Google Scholar
  67. 67.
    Li G, Yang F, Xu H, Yue Z, Fang X, Liu J (2015) MicroRNA-708 is downregulated in hepatocellular carcinoma and suppresses tumor invasion and migration. Biomed Pharmacother 73:154–159.  https://doi.org/10.1016/j.biopha.2015.05.010 Google Scholar
  68. 68.
    Lei SL, Zhao H, Yao HL, Chen Y, Lei ZD, Liu KJ, Yang Q (2014) Regulatory roles of microRNA-708 and microRNA-31 in proliferation, apoptosis and invasion of colorectal cancer cells. Oncol Lett 8(4):1768–1774.  https://doi.org/10.3892/ol.2014.2328 Google Scholar
  69. 69.
    Lin KT, Yeh YM, Chuang CM, Yang SY, Chang JW, Sun SP, Wang YS, Chao KC, Wang LH (2015) Glucocorticoids mediate induction of microRNA-708 to suppress ovarian cancer metastasis through targeting Rap1B. Nat Commun 6:5917.  https://doi.org/10.1038/ncomms6917 Google Scholar
  70. 70.
    Ryu S, McDonnell K, Choi H, Gao D, Hahn M, Joshi N, Park SM, Catena R, Do Y, Brazin J, Vahdat LT, Silver RB, Mittal V (2013) Suppression of miRNA-708 by polycomb group promotes metastases by calcium-induced cell migration. Cancer Cell 23(1):63–76.  https://doi.org/10.1016/j.ccr.2012.11.019 Google Scholar
  71. 71.
    Saini S, Yamamura S, Majid S, Shahryari V, Hirata H, Tanaka Y, Dahiya R (2011) MicroRNA-708 induces apoptosis and suppresses tumorigenicity in renal cancer cells. Cancer Res 71(19):6208–6219.  https://doi.org/10.1158/0008-5472.CAN-11-0073 Google Scholar
  72. 72.
    Yan W, Li R, Liu Y, Yang P, Wang Z, Zhang C, Bao Z, Zhang W, You Y, Jiang T (2014) MicroRNA expression patterns in the malignant progression of gliomas and a 5-microRNA signature for prognosis. Oncotarget 5(24):12908–12915.  10.18632/oncotarget.2679 Google Scholar
  73. 73.
    Xue H, Guo X, Han X, Yan S, Zhang J, Xu S, Li T, Zhang P, Gao X, Liu Q, Li G (2016) MicroRNA-584-3p, a novel tumor suppressor and prognostic marker, reduces the migration and invasion of human glioma cells by targeting hypoxia-induced ROCK1. Oncotarget 7(4):4785–4805.  10.18632/oncotarget.6735 Google Scholar
  74. 74.
    Wang XP, Deng XL, Li LY (2014) MicroRNA-584 functions as a tumor suppressor and targets PTTG1IP in glioma. Int J Clin Exp Pathol 7(12):8573–8582Google Scholar
  75. 75.
    Guled M, Lahti L, Lindholm PM, Salmenkivi K, Bagwan I, Nicholson AG, Knuutila S (2009) CDKN2A, NF2, and JUN are dysregulated among other genes by miRNAs in malignant mesothelioma -A miRNA microarray analysis. Genes Chromosomes Cancer 48(7):615–623.  https://doi.org/10.1002/gcc.20669 Google Scholar
  76. 76.
    Gaedcke J, Grade M, Camps J, Søkilde R, Kaczkowski B, Schetter AJ, Difilippantonio MJ, Harris CC, Ghadimi BM, Møller S, Beissbarth T, Ried T, Litman T (2012) The rectal cancer microRNAome--microRNA expression in rectal cancer and matched normal mucosa. Clin Cancer Res 18(18):4919–4930.  https://doi.org/10.1158/1078-0432.CCR-12-0016 Google Scholar
  77. 77.
    Ueno K, Hirata H, Shahryari V, Chen Y, Zaman MS, Singh K, Tabatabai ZL, Hinoda Y, Dahiya R (2011) Tumour suppressor microRNA-584 directly targets oncogene Rock-1 and decreases invasion ability in human clear cell renal cell carcinoma. Br J Cancer 104(2):308–315.  https://doi.org/10.1038/sj.bjc.6606028 Google Scholar
  78. 78.
    Xiang J, Wu Y, Li DS, Wang ZY, Shen Q, Sun TQ, Guan Q, Wang YJ (2015) miR-584 Suppresses Invasion and Cell Migration of Thyroid Carcinoma by Regulating the Target Oncogene ROCK1. Oncol Res Treat 38(9):436–440.  https://doi.org/10.1159/000438967 Google Scholar

Copyright information

© Arányi Lajos Foundation 2017

Authors and Affiliations

  • L. E. A. Delsin
    • 1
  • G. M. Roberto
    • 2
  • P. F. Fedatto
    • 4
  • E. E. Engel
    • 3
  • C. A. Scrideli
    • 4
  • L. G. Tone
    • 4
  • M. S. Brassesco
    • 5
    • 6
    Email author
  1. 1.Department of Genetics, Ribeirão Preto School of MedicineUniversity of São PauloSão PauloBrazil
  2. 2.Regional Blood Center, Ribeirão Preto School of MedicineUniversity of São PauloSão PauloBrazil
  3. 3.Department of Biomechanics, Medicine and Rehabilitation of the Locomotor SystemUniversity of São PauloSão PauloBrazil
  4. 4.Department of Pediatrics, Ribeirão Preto School of MedicineUniversity of São PauloSão PauloBrazil
  5. 5.Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão PretoUniversity of São PauloSão PauloBrazil
  6. 6.Departamento de BiologiaFFCLRP-USPRibeirão PretoBrazil

Personalised recommendations