Pathology & Oncology Research

, Volume 25, Issue 1, pp 59–69 | Cite as

Overexpression of TIMP-1 and Sensitivity to Topoisomerase Inhibitors in Glioblastoma Cell Lines

  • Charlotte Aaberg-Jessen
  • Louise Fogh
  • Mia Dahl Sørensen
  • Bo Halle
  • Nils Brünner
  • Bjarne Winther KristensenEmail author
Original Article


The multifunctional protein - tissue inhibitor of metalloproteinases-1 (TIMP-1) - has been associated with a poor prognosis in several types of cancers including glioblastomas. In addition, TIMP-1 has been associated with decreased response to chemotherapy, and especially the efficacy of the family of topoisomerase (TOP) inhibitors has been related to TIMP-1. As a second line treatment of glioblastomas, the vascular endothelial growth factor (VEGF) antibody bevacizumab is administered in combination with the TOP1 inhibitor irinotecan and glioblastoma cell levels of TIMP-1 could therefore potentially influence the efficacy of such treatment. In the present study, we aimed to investigate whether a high TIMP-1 expression in glioblastoma cell lines would affect the sensitivity to TOP inhibitors, and whether TIMP-1 overexpressing cells would have alterered growth and invasion. We established TIMP-1 overexpressing subclones from two human glioblastoma cell lines. TIMP-1 overexpressing U87MG cells were significantly more resistant than low TIMP-1 expressing clones and parental cells when exposed to SN-38 (TOP1 inhibitor) or epirubicin (TOP2 inhibitor). No significant differences were observed for the TIMP-1 transfected A172 cells. Implantation of both U87MG and A172 spheroids into organotypic brain slice cultures revealed a reduced growth of TIMP-1 overexpressing U87MG spheroids, however, no significant differences in invasion were observed. The present study suggests that TIMP-1 overexpression reduces the effect of TOP inhibitors in glioblastoma. TIMP-1 also appeared to reduce spheroid growth, but did not influence invasion. Whether TIMP-1 plays a role in irinotecan resistance and has a predictive potential in glioblastoma patients remains to be elucidated.


Glioblastoma TIMP-1 TOP inhibitors Chemosensitivity 



We would like to thank technicians Helle Wohlleben and Tanja Dreehsen Højgaard for assistance with the immunohistochemistry and Vibeke Jensen for assistance with ELISA.


The work was supported by The Danish Cancer Society, Danish Cancer Research Foundation and Fonden til Laegevidenskabens Fremme.

Compliance with Ethical Standards

Conflict of Interest

The authors declare no conflict of interest.


  1. 1.
    Louis DNW, Cavenee WK (2007) WHO classification of tumors of the central nervous system, 4 edn. International Agency for Research on Cancer (IARC), LyonGoogle Scholar
  2. 2.
    Agnihotri S, Gajadhar AS, Ternamian C, Gorlia T, Diefes KL, Mischel PS, Kelly J, McGown G, Thorncroft M, Carlson BL, Sarkaria JN, Margison GP, Aldape K, Hawkins C, Hegi M, Guha A (2012) Alkylpurine-DNA-N-glycosylase confers resistance to temozolomide in xenograft models of glioblastoma multiforme and is associated with poor survival in patients. J Clin Invest 122(1):253–266. CrossRefGoogle Scholar
  3. 3.
    Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760. CrossRefGoogle Scholar
  4. 4.
    Dean M (2009) ABC transporters, drug resistance, and cancer stem cells. J Mammary Gland Biol Neoplasia 14(1):3–9. CrossRefGoogle Scholar
  5. 5.
    Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5(4):275–284. CrossRefGoogle Scholar
  6. 6.
    Esteller M, Garcia-Foncillas J, Andion E, Goodman SN, Hidalgo OF, Vanaclocha V, Baylin SB, Herman JG (2000) Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med 343(19):1350–1354. CrossRefGoogle Scholar
  7. 7.
    Nakai E, Park K, Yawata T, Chihara T, Kumazawa A, Nakabayashi H, Shimizu K (2009) Enhanced MDR1 expression and chemoresistance of cancer stem cells derived from glioblastoma. Cancer Investig 27(9):901–908. CrossRefGoogle Scholar
  8. 8.
    Salmaggi A, Boiardi A, Gelati M, Russo A, Calatozzolo C, Ciusani E, Sciacca FL, Ottolina A, Parati EA, La Porta C, Alessandri G, Marras C, Croci D, De Rossi M (2006) Glioblastoma-derived tumorospheres identify a population of tumor stem-like cells with angiogenic potential and enhanced multidrug resistance phenotype. Glia 54(8):850–860. CrossRefGoogle Scholar
  9. 9.
    Chirco R, Liu XW, Jung KK, Kim HR (2006) Novel functions of TIMPs in cell signaling. Cancer Metastasis Rev 25(1):99–113. CrossRefGoogle Scholar
  10. 10.
    Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2(3):161–174. CrossRefGoogle Scholar
  11. 11.
    Gomez DE, Alonso DF, Yoshiji H, Thorgeirsson UP (1997) Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur J Cell Biol 74(2):111–122Google Scholar
  12. 12.
    Jiang Y, Goldberg ID, Shi YE (2002) Complex roles of tissue inhibitors of metalloproteinases in cancer. Oncogene 21(14):2245–2252. CrossRefGoogle Scholar
  13. 13.
    Bloomston M, Shafii A, Zervos E, Rosemurgy AS (2005) TIMP-1 antisense gene transfection attenuates the invasive potential of pancreatic cancer cells in vitro and inhibits tumor growth in vivo. Am J Surg 189(6):675–679. CrossRefGoogle Scholar
  14. 14.
    Guedez L, McMarlin AJ, Kingma DW, Bennett TA, Stetler-Stevenson M, Stetler-Stevenson WG (2001) Tissue inhibitor of metalloproteinase-1 alters the tumorigenicity of Burkitt's lymphoma via divergent effects on tumor growth and angiogenesis. Am J Pathol 158(4):1207–1215. CrossRefGoogle Scholar
  15. 15.
    Jung KK, Liu XW, Chirco R, Fridman R, Kim HR (2006) Identification of CD63 as a tissue inhibitor of metalloproteinase-1 interacting cell surface protein. EMBO J 25(17):3934–3942. CrossRefGoogle Scholar
  16. 16.
    Lambert E, Dasse E, Haye B, Petitfrere E (2004) TIMPs as multifacial proteins. Crit Rev Oncol Hematol 49(3):187–198. CrossRefGoogle Scholar
  17. 17.
    Stetler-Stevenson WG (2008) Tissue inhibitors of metalloproteinases in cell signaling: metalloproteinase-independent biological activities. Sci Signal 1(27):re6. CrossRefGoogle Scholar
  18. 18.
    Yoshiji H, Harris SR, Raso E, Gomez DE, Lindsay CK, Shibuya M, Sinha CC, Thorgeirsson UP (1998) Mammary carcinoma cells over-expressing tissue inhibitor of metalloproteinases-1 show enhanced vascular endothelial growth factor expression. International journal of cancer Journal international du cancer 75(1):81–87CrossRefGoogle Scholar
  19. 19.
    Liu XW, Bernardo MM, Fridman R, Kim HR (2003) Tissue inhibitor of metalloproteinase-1 protects human breast epithelial cells against intrinsic apoptotic cell death via the focal adhesion kinase/phosphatidylinositol 3-kinase and MAPK signaling pathway. J Biol Chem 278(41):40364–40372. CrossRefGoogle Scholar
  20. 20.
    Birgisson H, Nielsen HJ, Christensen IJ, Glimelius B, Brunner N (2010) Preoperative plasma TIMP-1 is an independent prognostic indicator in patients with primary colorectal cancer: a prospective validation study. Eur J Cancer 46(18):3323–3331. CrossRefGoogle Scholar
  21. 21.
    Holten-Andersen MN, Stephens RW, Nielsen HJ, Murphy G, Christensen IJ, Stetler-Stevenson W, Brunner N (2000) High preoperative plasma tissue inhibitor of metalloproteinase-1 levels are associated with short survival of patients with colorectal cancer. Clin Cancer Res : an official journal of the American Association for Cancer Research 6(11):4292–4299Google Scholar
  22. 22.
    Kuvaja P, Wurtz SO, Talvensaari-Mattila A, Brunner N, Paakko P, Turpeenniemi-Hujanen T (2007) High serum TIMP-1 correlates with poor prognosis in breast carcinoma - a validation study. Cancer Biomark : section A of Disease markers 3(6):293–300CrossRefGoogle Scholar
  23. 23.
    Pesta M, Kulda V, Kucera R, Pesek M, Vrzalova J, Liska V, Pecen L, Treska V, Safranek J, Prazakova M, Vycital O, Bruha J, Holubec L, Topolcan O (2011) Prognostic significance of TIMP-1 in non-small cell lung cancer. Anticancer Res 31(11):4031–4038Google Scholar
  24. 24.
    Rauvala M, Puistola U, Turpeenniemi-Hujanen T (2005) Gelatinases and their tissue inhibitors in ovarian tumors; TIMP-1 is a predictive as well as a prognostic factor. Gynecol Oncol 99(3):656–663. CrossRefGoogle Scholar
  25. 25.
    Schrohl AS, Holten-Andersen MN, Peters HA, Look MP, Meijer-van Gelder ME, Klijn JG, Brunner N, Foekens JA (2004) Tumor tissue levels of tissue inhibitor of metalloproteinase-1 as a prognostic marker in primary breast cancer. Clin Cancer Res : an official journal of the American Association for Cancer Research 10(7):2289–2298CrossRefGoogle Scholar
  26. 26.
    Wang CS, Wu TL, Tsao KC, Sun CF (2006) Serum TIMP-1 in gastric cancer patients: a potential prognostic biomarker. Ann Clin Lab Sci 36(1):23–30Google Scholar
  27. 27.
    Aaberg-Jessen C, Christensen K, Offenberg H, Bartels A, Dreehsen T, Hansen S, Schroder HD, Brunner N, Kristensen BW (2009) Low expression of tissue inhibitor of metalloproteinases-1 (TIMP-1) in glioblastoma predicts longer patient survival. J Neuro-Oncol 95(1):117–128. CrossRefGoogle Scholar
  28. 28.
    Ejlertsen B, Jensen MB, Nielsen KV, Balslev E, Rasmussen BB, Willemoe GL, Hertel PB, Knoop AS, Mouridsen HT, Brunner N (2010) HER2, TOP2A, and TIMP-1 and responsiveness to adjuvant anthracycline-containing chemotherapy in high-risk breast cancer patients. J Clin Oncol : official journal of the American Society of Clinical Oncology 28(6):984–990. CrossRefGoogle Scholar
  29. 29.
    Frederiksen C, Qvortrup C, Christensen IJ, Glimelius B, Berglund A, Jensen BV, Nielsen SE, Keldsen N, Nielsen HJ, Brunner N, Pfeiffer P (2011) Plasma TIMP-1 levels and treatment outcome in patients treated with XELOX for metastatic colorectal cancer. Ann Oncol : official journal of the European Society for Medical Oncology / ESMO 22(2):369–375. CrossRefGoogle Scholar
  30. 30.
    Klintman M, Ornbjerg Wurtz S, Christensen IJ, Braemer Hertel P, Ferno M, Malmberg M, Mouridsen H, Cold F, Schrohl AS, Foekens JA, Malmstrom P, Brunner N (2010) Association between tumor tissue TIMP-1 levels and objective response to first-line chemotherapy in metastatic breast cancer. Breast Cancer Res Treat 121(2):365–371. CrossRefGoogle Scholar
  31. 31.
    Schrohl AS, Meijer-van Gelder ME, Holten-Andersen MN, Christensen IJ, Look MP, Mouridsen HT, Brunner N, Foekens JA (2006) Primary tumor levels of tissue inhibitor of metalloproteinases-1 are predictive of resistance to chemotherapy in patients with metastatic breast cancer. Clin Cancer Res : an official journal of the American Association for Cancer Research 12(23):7054–7058. CrossRefGoogle Scholar
  32. 32.
    Sorensen NM, Bystrom P, Christensen IJ, Berglund A, Nielsen HJ, Brunner N, Glimelius B (2007) TIMP-1 is significantly associated with objective response and survival in metastatic colorectal cancer patients receiving combination of irinotecan, 5-fluorouracil, and folinic acid. Clin Cancer Res : an official journal of the American Association for Cancer Research 13(14):4117–4122. CrossRefGoogle Scholar
  33. 33.
    Gruppe DNO (2012) Retningslinier for behandling af intrakranielle gliomer hos voksne.
  34. 34.
    Champoux JJ (2000) Structure-based analysis of the effects of camptothecin on the activities of human topoisomerase I. Ann N Y Acad Sci 922:56–64CrossRefGoogle Scholar
  35. 35.
    Hsiang YH, Liu LF (1988) Identification of mammalian DNA topoisomerase I as an intracellular target of the anticancer drug camptothecin. Cancer Res 48(7):1722–1726Google Scholar
  36. 36.
    Deng X, Fogh L, Lademann U, Jensen V, Stenvang J, Yang H, Brunner N, Schrohl AS (2013) TIMP-1 overexpression does not affect sensitivity to HER2-targeting drugs in the HER2-gene-amplified SK-BR-3 human breast cancer cell line. Tumour Biol : the journal of the International Society for Oncodevelopmental Biology and Medicine 34(2):1161–1170. CrossRefGoogle Scholar
  37. 37.
    Holten-Andersen MN, Christensen IJ, Nielsen HJ, Lilja H, Murphy G, Jensen V, Brunner N, Piironen T (2002) Measurement of the noncomplexed free fraction of tissue inhibitor of metalloproteinases 1 in plasma by immunoassay. Clin Chem 48(8):1305–1313Google Scholar
  38. 38.
    Holten-Andersen MN, Murphy G, Nielsen HJ, Pedersen AN, Christensen IJ, Hoyer-Hansen G, Brunner N, Stephens RW (1999) Quantitation of TIMP-1 in plasma of healthy blood donors and patients with advanced cancer. Br J Cancer 80(3–4):495–503. CrossRefGoogle Scholar
  39. 39.
    Aaberg-Jessen C, Norregaard A, Christensen K, Pedersen CB, Andersen C, Kristensen BW (2013) Invasion of primary glioma- and cell line-derived spheroids implanted into corticostriatal slice cultures. Int J Clin Exp Pathol 6(4):546–560Google Scholar
  40. 40.
    Hekmat O, Munk S, Fogh L, Yadav R, Francavilla C, Horn H, Wurtz SO, Schrohl AS, Damsgaard B, Romer MU, Belling KC, Jensen NF, Gromova I, Bekker-Jensen DB, Moreira JM, Jensen LJ, Gupta R, Lademann U, Brunner N, Olsen JV, Stenvang J (2013) TIMP-1 increases expression and phosphorylation of proteins associated with drug resistance in breast cancer cells. J Proteome Res.
  41. 41.
    Fu ZY, Lv JH, Ma CY, Yang DP, Wang T (2011) Tissue inhibitor of metalloproteinase-1 decreased chemosensitivity of MDA-435 breast cancer cells to chemotherapeutic drugs through the PI3K/AKT/NF-small ka, CyrillicB pathway. Biomed Pharmacother = Biomedecine & pharmacotherapie 65(3):163–167. CrossRefGoogle Scholar
  42. 42.
    Wang T, Lv JH, Zhang XF, Li CJ, Han X, Sun YJ (2010) Tissue inhibitor of metalloproteinase-1 protects MCF-7 breast cancer cells from paclitaxel-induced apoptosis by decreasing the stability of cyclin B1. Int J Cancer: Journal international du cancer 126(2):362–370. CrossRefGoogle Scholar
  43. 43.
    Willemoe GL, Hertel PB, Bartels A, Jensen MB, Balslev E, Rasmussen BB, Mouridsen H, Ejlertsen B, Brunner N (2009) Lack of TIMP-1 tumour cell immunoreactivity predicts effect of adjuvant anthracycline-based chemotherapy in patients (n=647) with primary breast cancer. A Danish breast cancer cooperative group study. Eur J Cancer 45(14):2528–2536. CrossRefGoogle Scholar
  44. 44.
    Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, Fiocco R, Foroni C, Dimeco F, Vescovi A (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64(19):7011–7021. CrossRefGoogle Scholar
  45. 45.
    Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, Pastorino S, Purow BW, Christopher N, Zhang W, Park JK, Fine HA (2006) Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9(5):391–403. CrossRefGoogle Scholar
  46. 46.
    Yu SC, Ping YF, Yi L, Zhou ZH, Chen JH, Yao XH, Gao L, Wang JM, Bian XW (2008) Isolation and characterization of cancer stem cells from a human glioblastoma cell line U87. Cancer Lett 265(1):124–134. CrossRefGoogle Scholar
  47. 47.
    Nakano A, Tani E, Miyazaki K, Yamamoto Y, Furuyama J (1995) Matrix metalloproteinases and tissue inhibitors of metalloproteinases in human gliomas. J Neurosurg 83(2):298–307. CrossRefGoogle Scholar
  48. 48.
    Matsuzawa K, Fukuyama K, Hubbard SL, Dirks PB, Rutka JT (1996) Transfection of an invasive human astrocytoma cell line with a TIMP-1 cDNA: modulation of astrocytoma invasive potential. J Neuropathol Exp Neurol 55(1):88–96CrossRefGoogle Scholar
  49. 49.
    Bigelow RL, Williams BJ, Carroll JL, Daves LK, Cardelli JA (2009) TIMP-1 overexpression promotes tumorigenesis of MDA-MB-231 breast cancer cells and alters expression of a subset of cancer promoting genes in vivo distinct from those observed in vitro. Breast Cancer Res Treat 117(1):31–44. CrossRefGoogle Scholar

Copyright information

© Arányi Lajos Foundation 2017

Authors and Affiliations

  • Charlotte Aaberg-Jessen
    • 1
    • 2
  • Louise Fogh
    • 3
  • Mia Dahl Sørensen
    • 1
    • 4
  • Bo Halle
    • 1
    • 5
  • Nils Brünner
    • 3
  • Bjarne Winther Kristensen
    • 1
    • 4
    Email author
  1. 1.Department of PathologyOdense University HospitalOdenseDenmark
  2. 2.Department of Nuclear MedicineOdense University HospitalOdenseDenmark
  3. 3.Institute for Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
  4. 4.Institute of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
  5. 5.Department of NeurosurgeryOdense University HospitalOdenseDenmark

Personalised recommendations