Advertisement

Pathology & Oncology Research

, Volume 25, Issue 1, pp 33–44 | Cite as

Metabolic Phase I (CYPs) and Phase II (GSTs) Gene Polymorphisms and Their Interaction with Environmental Factors in Nasopharyngeal Cancer from the Ethnic Population of Northeast India

  • Seram Anil Singh
  • Sankar Kumar GhoshEmail author
Original Article
  • 78 Downloads

Abstract

Multiple genetic and environmental factors and their interaction are believed to contribute in the pathogenesis of Nasopharyngeal Cancer (NPC). We investigate the role of Metabolic Phase I (CYPs) and Phase II (GSTs) gene polymorphisms, gene-gene and gene-environmental interaction in modulating the susceptibility to NPC in Northeast India. To determine the association of metabolic gene polymorphisms and environmental habits, 123 cases and 189 controls blood/swab samples were used for PCR and confirmed by Sanger sequencing. Analysis for GSTM1 and GSTT1 gene polymorphism was done by multiplex PCR. The T3801C in the 3′- flanking region of CYP1A1 gene was detected by PCR-RFLP method. The Logistic regression analysis was used to estimate odds ratios (OR) and 95% confidence intervals (95% CI). The GSTM1 null genotype alone (OR = 2.76) was significantly associated with NPC risk (P < 0.0001). The combinations of GSTM1 null and GSTT1 null genotypes also higher, 3.77 fold (P < 0.0001), risk of NPC, while GSTM1 null genotype along with CYP1A1 T3801C TC + CC genotype had 3.22 (P = 0.001) fold risk. The most remarkable risk was seen among individual carrying GSTM1 null, GSTT1 null genotypes and CYP1A1 T3801C TC + CC genotypes (OR = 5.71, P = 0.001). Further; analyses demonstrate an enhanced risk of NPC in smoked meat (OR = 5.56, P < 0.0001) and fermented fish consumers (OR = 5.73, P < 0.0001) carrying GSTM1 null genotype. An elevated risk of NPC was noted in smokers (OR = 12.67, P < 0.0001) and chewers (OR = 5.68, P < 0.0001) with GSTM1 null genotype. However, smokers had the highest risk of NPC among individuals carrying GSTT1 null genotype (OR = 4.46, P = 0.001) or CYP1A1 T3801C TC + CC genotype (OR = 7.13, P < 0.0001). The association of null genotypes and mutations of metabolic neutralizing genes along with the environmental habits (tobacco smokers and chewers, smoke meat, fermented fishes) can be used as a possible biomarker for early detection and preventive measure of NPC.

Keywords

Nasopharyngeal carcinoma (NPC) Polymorphisms in metabolizing genes Gene-gene interaction Tobacco smokers and chewers Gene-environment interaction Northeast India 

Notes

Acknowledgements

Our humble acknowledgement goes to the Department of Biotechnology (DBT), Govt. of India for providing infra-structural facilities.

(BT/Med/NE-SFC/2009) for conducting research on Cancer and Naga Hospital Administration, Kohima; RIMS, Imphal; Civil Hospital, Aizwal for the biological samples.

Compliance with Ethical Standards

Conflict of Interest

The authors declare no conflict of interest.

References

  1. 1.
    Chang ET, Adami HO (2006) The enigmatic epidemiology of nasopharyngeal carcinoma. Cancer Epidemiol Biomark Prev 15(10):1765–1777.  https://doi.org/10.1158/1055-9965.EPI-06-0353 CrossRefGoogle Scholar
  2. 2.
    Kataki AC, Simons MJ, Das AK, Sharma K, Mehra NK (2011) Nasopharyngeal carcinoma in the Northeastern states of India. Chin J Cancer 30(2):106–113CrossRefGoogle Scholar
  3. 3.
    Ghosh SK, Singh AS, Mondal R, Kapfo W, Khamo V, Singh YI (2014) Dysfunction of mitochondria due to environmental carcinogens in nasopharyngeal carcinoma in the ethnic group of northeast Indian population. Tumour Biol J Int Soc Oncodev Biol Med.  https://doi.org/10.1007/s13277-014-1897-x
  4. 4.
    Tsao SW, Yip YL, Tsang CM, Pang PS, Lau VM, Zhang G, Lo KW (2014) Etiological factors of nasopharyngeal carcinoma. Oral Oncol 50(5):330–338.  https://doi.org/10.1016/j.oraloncology.2014.02.006 CrossRefGoogle Scholar
  5. 5.
    Jia WH, Luo XY, Feng BJ, Ruan HL, Bei JX, Liu WS, Qin HD, Feng QS, Chen LZ, Yao SY, Zeng YX (2010) Traditional Cantonese diet and nasopharyngeal carcinoma risk: a large-scale case-control study in Guangdong, China. BMC Cancer 10:446.  https://doi.org/10.1186/1471-2407-10-446 CrossRefGoogle Scholar
  6. 6.
    Belbaraka R, Lalya I, Boulaamane L, Tazi M, Benjaafar N, Errihani H (2013) Dietary risk factors of undifferenced nasopharyngeal carcinoma: a case-control study. Tunis Med 91(6):406–409Google Scholar
  7. 7.
    Gallicchio L, Matanoski G, Tao XG, Chen L, Lam TK, Boyd K, Robinson KA, Balick L, Mickelson S, Caulfield LE, Herman JG, Guallar E, Alberg AJ (2006) Adulthood consumption of preserved and nonpreserved vegetables and the risk of nasopharyngeal carcinoma: a systematic review. Int J Cancer 119(5):1125–1135.  https://doi.org/10.1002/ijc.21946 CrossRefGoogle Scholar
  8. 8.
    Hildesheim A, West S, DeVeyra E, De Guzman MF, Jurado A, Jones C, Imai J, Hinuma Y (1992) Herbal medicine use, Epstein-Barr virus, and risk of nasopharyngeal carcinoma. Cancer Res 52(11):3048–3051Google Scholar
  9. 9.
    Chelleng PK, Narain K, Das HK, Chetia M, Mahanta J (2000) Risk factors for cancer nasopharynx: a case-control study from Nagaland, India. Natl Med J India 13(1):6–8Google Scholar
  10. 10.
    Xue WQ, Qin HD, Ruan HL, Shugart YY, Jia WH (2013) Quantitative association of tobacco smoking with the risk of nasopharyngeal carcinoma: a comprehensive meta-analysis of studies conducted between 1979 and 2011. Am J Epidemiol 178(3):325–338.  https://doi.org/10.1093/aje/kws479 CrossRefGoogle Scholar
  11. 11.
    Fachiroh J, Sangrajrang S, Johansson M, Renard H, Gaborieau V, Chabrier A, Chindavijak S, Brennan P, McKay JD (2012) Tobacco consumption and genetic susceptibility to nasopharyngeal carcinoma (NPC) in Thailand. Cancer Causes Control: CCC 23(12):1995–2002.  https://doi.org/10.1007/s10552-012-0077-9 CrossRefGoogle Scholar
  12. 12.
    Ruan HL, Xu FH, Liu WS, Feng QS, Chen LZ, Zeng YX, Jia WH (2010) Alcohol and tea consumption in relation to the risk of nasopharyngeal carcinoma in Guangdong, China. Front Med China 4(4):448–456.  https://doi.org/10.1007/s11684-010-0280-6 CrossRefGoogle Scholar
  13. 13.
    Chen L, Gallicchio L, Boyd-Lindsley K, Tao XG, Robinson KA, Lam TK, Herman JG, Caulfield LE, Guallar E, Alberg AJ (2009) Alcohol consumption and the risk of nasopharyngeal carcinoma: a systematic review. Nutr Cancer 61(1):1–15.  https://doi.org/10.1080/01635580802372633 CrossRefGoogle Scholar
  14. 14.
    Bei JX, Li Y, Jia WH, Feng BJ, Zhou G, Chen LZ, Feng QS, Low HQ, Zhang H, He F, Tai ES, Kang T, Liu ET, Liu J, Zeng YX (2010) A genome-wide association study of nasopharyngeal carcinoma identifies three new susceptibility loci. Nat Genet 42(7):599–603.  https://doi.org/10.1038/ng.601 CrossRefGoogle Scholar
  15. 15.
    Diggs DL, Huderson AC, Harris KL, Myers JN, Banks LD, Rekhadevi PV, Niaz MS, Ramesh A (2011) Polycyclic aromatic hydrocarbons and digestive tract cancers: a perspective. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 29(4):324–357.  https://doi.org/10.1080/10590501.2011.629974 CrossRefGoogle Scholar
  16. 16.
    Lachenmeier DW, Przybylski MC, Rehm J (2012) Comparative risk assessment of carcinogens in alcoholic beverages using the margin of exposure approach. Int J Cancer 131(6):E995–1003.  https://doi.org/10.1002/ijc.27553 CrossRefGoogle Scholar
  17. 17.
    Mondal R, Ghosh SK (2013) Accumulation of mutations over the complete mitochondrial genome in tobacco-related oral cancer from northeast India. Mitochondrial DNA 24(4):432–439.  https://doi.org/10.3109/19401736.2012.760551 CrossRefGoogle Scholar
  18. 18.
    Xue W, Warshawsky D (2005) Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: a review. Toxicol Appl Pharmacol 206(1):73–93.  https://doi.org/10.1016/j.taap.2004.11.006 CrossRefGoogle Scholar
  19. 19.
    Shukla D, Dinesh Kale A, Hallikerimath S, Yerramalla V, Subbiah V, Mishra S (2013) Association between GSTM1 and CYP1A1 polymorphisms and survival in oral cancer patients. Biomed Pap Med Fac Univ Palacky Olomouc Czechoslovakia 157(4):304–310.  https://doi.org/10.5507/bp.2013.028 CrossRefGoogle Scholar
  20. 20.
    Rodriguez-Antona C, Ingelman-Sundberg M (2006) Cytochrome P450 pharmacogenetics and cancer. Oncogene 25(11):1679–1691.  https://doi.org/10.1038/sj.onc.1209377 CrossRefGoogle Scholar
  21. 21.
    Mota P, Moura DS, Vale MG, Coimbra H, Carvalho L, Regateiro F (2010) CYP1A1 m1 and m2 polymorphisms: genetic susceptibility to lung cancer. Rev Port Pneumol 16(1):89–98CrossRefGoogle Scholar
  22. 22.
    Sabitha K, Reddy MV, Jamil K (2010) Smoking related risk involved in individuals carrying genetic variants of CYP1A1 gene in head and neck cancer. Cancer Epidemiol 34(5):587–592.  https://doi.org/10.1016/j.canep.2010.05.002 CrossRefGoogle Scholar
  23. 23.
    Sergentanis TN, Economopoulos KP (2010) Four polymorphisms in cytochrome P450 1A1 (CYP1A1) gene and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 122(2):459–469.  https://doi.org/10.1007/s10549-009-0694-5 CrossRefGoogle Scholar
  24. 24.
    Mondal R, Ghosh SK, Choudhury JH, Seram A, Sinha K, Hussain M, Laskar RS, Rabha B, Dey P, Ganguli S, Nathchoudhury M, Talukdar FR, Chaudhuri B, Dhar B (2013) Mitochondrial DNA copy number and risk of oral cancer: a report from Northeast India. PLoS One 8(3):e57771.  https://doi.org/10.1371/journal.pone.0057771 CrossRefGoogle Scholar
  25. 25.
    Nosheen M, Ishrat M, Malik FA, Baig RM, Kayani MA (2010) Association of GSTM1 and GSTT1 gene deletions with risk of head and neck cancer in Pakistan: a case control study. Asian Pac J Cancer Prev 11(4):881–885Google Scholar
  26. 26.
    Sharma A, Das BC, Sehgal A, Mehrotra R, Kar P, Sardana S, Phukan R, Mahanta J, Purkayastha J, Saxena S, Kapur S, Chatterjee I, Sharma JK (2013) GSTM1 and GSTT1 polymorphism and susceptibility to esophageal cancer in high- and low-risk regions of India. Tumour Biol J Int Soc Oncodev Biol Med 34(5):3249–3257.  https://doi.org/10.1007/s13277-013-0897-6 CrossRefGoogle Scholar
  27. 27.
    Shukla RK, Tilak AR, Kumar C, Kant S, Kumar A, Mittal B, Bhattacharya S (2013) Associations of CYP1A1, GSTM1 and GSTT1 polymorphisms with lung cancer susceptibility in a Northern Indian population. Asian Pac J Cancer Prev 14(5):3345–3349CrossRefGoogle Scholar
  28. 28.
    Ihsan R, Chauhan PS, Mishra AK, Yadav DS, Kaushal M, Sharma JD, Zomawia E, Verma Y, Kapur S, Saxena S (2011) Multiple analytical approaches reveal distinct gene-environment interactions in smokers and non smokers in lung cancer. PLoS One 6(12):e29431.  https://doi.org/10.1371/journal.pone.0029431 CrossRefGoogle Scholar
  29. 29.
    Ghosh SK, Mondal R (2012) Quick diagnosis of female genital tuberculosis using multiplex fast polymerase chain reaction in Southern Assam, India. Int J Gynaecol Obstet Off Organ Int Fed Gynaecol Obstet 118(1):72–73.  https://doi.org/10.1016/j.ijgo.2012.02.006 CrossRefGoogle Scholar
  30. 30.
    Mondal R, Ghosh SK, Talukdar FR, Laskar RS (2013) Association of mitochondrial D-loop mutations with GSTM1 and GSTT1 polymorphisms in oral carcinoma: a case control study from northeast India. Oral Oncol 49(4):345–353.  https://doi.org/10.1016/j.oraloncology.2012.11.003 CrossRefGoogle Scholar
  31. 31.
    Kiruthiga PV, Kannan MR, Saraswathi C, Pandian SK, Devi KP (2011) CYP1A1 gene polymorphisms: lack of association with breast cancer susceptibility in the southern region (Madurai) of India. Asian Pac J Cancer Prev 12(8):2133–2138Google Scholar
  32. 32.
    Choudhury JH, Choudhury B, Kundu S, Ghosh SK (2014) Combined effect of tobacco and DNA repair genes polymorphisms of XRCC1 and XRCC2 influence high risk of head and neck squamous cell carcinoma in northeast Indian population. Med Oncol 31(8):67.  https://doi.org/10.1007/s12032-014-0067-8 CrossRefGoogle Scholar
  33. 33.
    Choudhury JH, Ghosh SK (2014) Gene-environment interaction and susceptibility in head and neck cancer patients and in their first-degree relatives: a study of Northeast Indian population. J Oral Pathol Med Off Publ Int Assoc Oral Pathol Am Acad Oral Pathol.  https://doi.org/10.1111/jop.12249
  34. 34.
    McIlwain CC, Townsend DM, Tew KD (2006) Glutathione S-transferase polymorphisms: cancer incidence and therapy. Oncogene 25(11):1639–1648.  https://doi.org/10.1038/sj.onc.1209373 CrossRefGoogle Scholar
  35. 35.
    Sarkar S, Nagabhushan M, Soman CS, Tricker AR, Bhide SV (1989) Mutagenicity and carcinogenicity of smoked meat from Nagaland, a region of India prone to a high incidence of nasopharyngeal cancer. Carcinogenesis 10(4):733–736CrossRefGoogle Scholar
  36. 36.
    Guo X, O'Brien SJ, Zeng Y, Nelson GW, Winkler CA (2008) GSTM1 and GSTT1 gene deletions and the risk for nasopharyngeal carcinoma in Han Chinese. Cancer Epidemiol Biomark Prev 17(7):1760–1763.  https://doi.org/10.1158/1055-9965.EPI-08-0149 CrossRefGoogle Scholar
  37. 37.
    Jiang Y, Li N, Dong P, Zhang N, Sun Y, Han M, Wen J, Chen M (2011) Polymorphisms in GSTM1, GSTTI and GSTP1 and nasopharyngeal cancer in the east of China: a case-control study. Asian Pac J Cancer Prev 12(11):3097–3100Google Scholar
  38. 38.
    Wei Y, Zhou T, Lin H, Sun M, Wang D, Li H, Li B (2013) Significant associations between GSTM1/GSTT1 polymorphisms and nasopharyngeal cancer risk. Tumour Biol J Int Soc Oncodev Biol Med 34(2):887–894.  https://doi.org/10.1007/s13277-012-0623-9 CrossRefGoogle Scholar
  39. 39.
    Cheng YJ, Chien YC, Hildesheim A, Hsu MM, Chen IH, Chuang J, Chang J, Ma YD, Luo CT, Hsu WL, Hsu HH, Huang H, Chang JF, Chen CJ, Yang CS (2003) No association between genetic polymorphisms of CYP1A1, GSTM1, GSTT1, GSTP1, NAT2, and nasopharyngeal carcinoma in Taiwan. Cancer Epidemiol Biomark Prev 12(2):179–180Google Scholar
  40. 40.
    Anantharaman D, Chaubal PM, Kannan S, Bhisey RA, Mahimkar MB (2007) Susceptibility to oral cancer by genetic polymorphisms at CYP1A1, GSTM1 and GSTT1 loci among Indians: tobacco exposure as a risk modulator. Carcinogenesis 28(7):1455–1462.  https://doi.org/10.1093/carcin/bgm038 CrossRefGoogle Scholar
  41. 41.
    Soya SS, Vinod T, Reddy KS, Gopalakrishnan S, Adithan C (2007) Genetic polymorphisms of glutathione-S-transferase genes (GSTM1, GSTT1 and GSTP1) and upper aerodigestive tract cancer risk among smokers, tobacco chewers and alcoholics in an Indian population. Eur J Cancer 43(18):2698–2706.  https://doi.org/10.1016/j.ejca.2007.07.006 CrossRefGoogle Scholar
  42. 42.
    Ghosh SK, Singh AS, Mondal R, Kapfo W, Khamo V, Singh YI (2014) Dysfunction of mitochondria due to environmental carcinogens in nasopharyngeal carcinoma in the ethnic group of Northeast Indian population. Tumour Biol J Int Soc Oncodev Biol Med 35(7):6715–6724.  https://doi.org/10.1007/s13277-014-1897-x CrossRefGoogle Scholar
  43. 43.
    Sam SS, Thomas V, Reddy SK, Surianarayanan G, Chandrasekaran A (2008) CYP1A1 polymorphisms and the risk of upper aerodigestive tract cancers in an Indian population. Head Neck 30(12):1566–1574.  https://doi.org/10.1002/hed.20897 CrossRefGoogle Scholar
  44. 44.
    Chandirasekar R, Kumar BL, Sasikala K, Jayakumar R, Suresh K, Venkatesan R, Jacob R, Krishnapriya EK, Kavitha H, Ganesh GK (2014) Assessment of genotoxic and molecular mechanisms of cancer risk in smoking and smokeless tobacco users. Mutat Res Genet Toxicol Environ Mutagen 767C:21–27.  https://doi.org/10.1016/j.mrgentox.2014.04.007 CrossRefGoogle Scholar
  45. 45.
    Bartsch H, Rojas M, Nair U, Nair J, Alexandrov K (1999) Genetic cancer susceptibility and DNA adducts: studies in smokers, tobacco chewers, and coke oven workers. Cancer Detect Prev 23(6):445–453CrossRefGoogle Scholar
  46. 46.
    Sharma R, Ahuja M, Panda NK, Khullar M (2011) Interactions among genetic variants in tobacco metabolizing genes and smoking are associated with head and neck cancer susceptibility in north Indians. DNA Cell Biol 30(8):611–616.  https://doi.org/10.1089/dna.2010.1184 CrossRefGoogle Scholar
  47. 47.
    Matthias C, Bockmuhl U, Jahnke V, Jones PW, Hayes JD, Alldersea J, Gilford J, Bailey L, Bath J, Worrall SF, Hand P, Fryer AA, Strange RC (1998) Polymorphism in cytochrome P450 CYP2D6, CYP1A1, CYP2E1 and glutathione S-transferase, GSTM1, GSTM3, GSTT1 and susceptibility to tobacco-related cancers: studies in upper aerodigestive tract cancers. Pharmacogenetics 8(2):91–100CrossRefGoogle Scholar
  48. 48.
    Varela-Lema L, Taioli E, Ruano-Ravina A, Barros-Dios JM, Anantharaman D, Benhamou S, Boccia S, Bhisey RA, Cadoni G, Capoluongo E, Chen CJ, Foulkes W, Goloni-Bertollo EM, Hatagima A, Hayes RB, Katoh T, Koifman S, Lazarus P, Manni JJ, Mahimkar M, Morita S, Park J, Park KK, Pavarino Bertelli EC, de Souza Fonseca Ribeiro EM, Roy B, Spitz MR, Strange RC, Wei Q, Ragin CC (2008) Meta-analysis and pooled analysis of GSTM1 and CYP1A1 polymorphisms and oral and pharyngeal cancers: a HuGE-GSEC review. Genet Med Off J Am Coll Med Genet 10(6):369–384.  https://doi.org/10.1097/GIM.0b013e3181770196 Google Scholar
  49. 49.
    Choudhury JH, Ghosh SK (2015) Promoter hypermethylation profiling identifies subtypes of head and neck cancer with distinct viral, environmental, genetic and survival characteristics. PLoS One 10(6):e0129808.  https://doi.org/10.1371/journal.pone.0129808 CrossRefGoogle Scholar
  50. 50.
    Laskar RS, Talukdar FR, Choudhury JH, Singh SA, Kundu S, Dhar B, Mondal R, Ghosh SK (2015) Association of HPV with genetic and epigenetic alterations in colorectal adenocarcinoma from Indian population. Tumour Biol J Int Soc Oncodev Biol Med 36(6):4661–4670.  https://doi.org/10.1007/s13277-015-3114-y CrossRefGoogle Scholar
  51. 51.
    Pietrusinski M, Kepczynski L, Jedrzejczyk A, Borkowska E, Traczyk-Borszynska M, Constantinou M, Kauzewski B, Borowiec M (2016) Detection of bladder cancer in urine sediments by a hypermethylation panel of selected tumor suppressor genes. Cancer Biomark Sect A Dis Mark.  https://doi.org/10.3233/CBM-160673
  52. 52.
    Jiang W, Cai R, Chen QQ (2015) DNA methylation biomarkers for nasopharyngeal carcinoma: diagnostic and prognostic tools. Asian Pac J Cancer Prev 16(18):8059–8065CrossRefGoogle Scholar
  53. 53.
    Lo KW, Chung GT, To KF (2012) Deciphering the molecular genetic basis of NPC through molecular, cytogenetic, and epigenetic approaches. Semin Cancer Biol 22(2):79–86.  https://doi.org/10.1016/j.semcancer.2011.12.011 CrossRefGoogle Scholar
  54. 54.
    Dai W, Zheng H, Cheung AK, Lung ML (2016) Genetic and epigenetic landscape of nasopharyngeal carcinoma. Chinese. Clin Oncol 5(2):16.  10.21037/cco.2016.03.06 Google Scholar
  55. 55.
    Talukdar FR, Ghosh SK, Laskar RS, Kannan R, Choudhury B, Bhowmik A (2015) Epigenetic pathogenesis of human papillomavirus in upper aerodigestive tract cancers. Mol Carcinog 54(11):1387–1396.  https://doi.org/10.1002/mc.22214 CrossRefGoogle Scholar
  56. 56.
    Lleras RA, Smith RV, Adrien LR, Schlecht NF, Burk RD, Harris TM, Childs G, Prystowsky MB, Belbin TJ (2013) Unique DNA methylation loci distinguish anatomic site and HPV status in head and neck squamous cell carcinoma. Clin Cancer Res 19(19):5444–5455.  https://doi.org/10.1158/1078-0432.CCR-12-3280 CrossRefGoogle Scholar
  57. 57.
    Talukdar FR, Ghosh SK, Laskar RS, Mondal R (2013) Epigenetic, genetic and environmental interactions in esophageal squamous cell carcinoma from northeast India. PLoS One 8(4):e60996.  https://doi.org/10.1371/journal.pone.0060996 CrossRefGoogle Scholar
  58. 58.
    Zhou L, Jiang W, Ren C, Yin Z, Feng X, Liu W, Tao Q, Yao K (2005) Frequent hypermethylation of RASSF1A and TSLC1, and high viral load of Epstein-Barr virus DNA in nasopharyngeal carcinoma and matched tumor-adjacent tissues. Neoplasia 7(9):809–815CrossRefGoogle Scholar
  59. 59.
    Tong JH, Tsang RK, Lo KW, Woo JK, Kwong J, Chan MW, Chang AR, van Hasselt CA, Huang DP, To KF (2002) Quantitative Epstein-Barr virus DNA analysis and detection of gene promoter hypermethylation in nasopharyngeal (NP) brushing samples from patients with NP carcinoma. Clin Cancer Res 8(8):2612–2619Google Scholar
  60. 60.
    Tsai CN, Tsai CL, Tse KP, Chang HY, Chang YS (2002) The Epstein-Barr virus oncogene product, latent membrane protein 1, induces the downregulation of E-cadherin gene expression via activation of DNA methyltransferases. Proc Natl Acad Sci U S A 99(15):10084–10089.  https://doi.org/10.1073/pnas.152059399 CrossRefGoogle Scholar
  61. 61.
    Skalska L, White RE, Franz M, Ruhmann M, Allday MJ (2010) Epigenetic repression of p16(INK4A) by latent Epstein-Barr virus requires the interaction of EBNA3A and EBNA3C with CtBP. PLoS Pathog 6(6):e1000951.  https://doi.org/10.1371/journal.ppat.1000951 CrossRefGoogle Scholar
  62. 62.
    Kulkarni V, Saranath D (2004) Concurrent hypermethylation of multiple regulatory genes in chewing tobacco associated oral squamous cell carcinomas and adjacent normal tissues. Oral Oncol 40(2):145–153CrossRefGoogle Scholar
  63. 63.
    Hasegawa M, Nelson HH, Peters E, Ringstrom E, Posner M, Kelsey KT (2002) Patterns of gene promoter methylation in squamous cell cancer of the head and neck. Oncogene 21(27):4231–4236.  https://doi.org/10.1038/sj.onc.1205528 CrossRefGoogle Scholar
  64. 64.
    Chang HW, Ling GS, Wei WI, Yuen AP (2004) Smoking and drinking can induce p15 methylation in the upper aerodigestive tract of healthy individuals and patients with head and neck squamous cell carcinoma. Cancer 101(1):125–132.  https://doi.org/10.1002/cncr.20323 CrossRefGoogle Scholar
  65. 65.
    Ishida E, Nakamura M, Ikuta M, Shimada K, Matsuyoshi S, Kirita T, Konishi N (2005) Promotor hypermethylation of p14ARF is a key alteration for progression of oral squamous cell carcinoma. Oral Oncol 41(6):614–622.  https://doi.org/10.1016/j.oraloncology.2005.02.003 CrossRefGoogle Scholar
  66. 66.
    Puri SK, Si L, Fan CY, Hanna E (2005) Aberrant promoter hypermethylation of multiple genes in head and neck squamous cell carcinoma. Am J Otolaryngol 26(1):12–17CrossRefGoogle Scholar
  67. 67.
    Brait M, Ford JG, Papaiahgari S, Garza MA, Lee JI, Loyo M, Maldonado L, Begum S, McCaffrey L, Howerton M, Sidransky D, Emerson MR, Ahmed S, Williams CD, Hoque MO (2009) Association between lifestyle factors and CpG island methylation in a cancer-free population. Cancer Epidemiol Biomark Prev 18(11):2984–2991.  https://doi.org/10.1158/1055-9965.EPI-08-1245 CrossRefGoogle Scholar
  68. 68.
    Lin RK, Hsieh YS, Lin P, Hsu HS, Chen CY, Tang YA, Lee CF, Wang YC (2010) The tobacco-specific carcinogen NNK induces DNA methyltransferase 1 accumulation and tumor suppressor gene hypermethylation in mice and lung cancer patients. J Clin Invest 120(2):521–532.  https://doi.org/10.1172/JCI40706 CrossRefGoogle Scholar
  69. 69.
    Bonsch D, Lenz B, Fiszer R, Frieling H, Kornhuber J, Bleich S (2006) Lowered DNA methyltransferase (DNMT-3b) mRNA expression is associated with genomic DNA hypermethylation in patients with chronic alcoholism. J Neural Transm (Vienna) 113(9):1299–1304.  https://doi.org/10.1007/s00702-005-0413-2 CrossRefGoogle Scholar

Copyright information

© Arányi Lajos Foundation 2017

Authors and Affiliations

  1. 1.Molecular Medicine Laboratory, Department of BiotechnologyAssam UniversitySilcharIndia
  2. 2.Department of Applied Biology, School of Biological SciencesUniversity of Science and TechnologyRi-BhoiIndia
  3. 3.University of KalyaniKalyaniIndia

Personalised recommendations