Skip to main content
Log in

Anthracycline Causes Impaired Vascular Endothelial Function and Aortic Stiffness in Long Term Survivors of Childhood Cancer

  • Research
  • Published:
Pathology & Oncology Research

Abstract

Vascular and endothelial functions were investigated in long term survivors of childhood cancer exposed to anthracycline treatment. We enrolled 96 long-term survivors (57 males and 39 females, mean age 14.9 ± 5.3 year) of different childhood cancers and 72 age-, sex-, bodyweight- and blood pressure matched controls (39 males and 33 females, mean age 13.7 ± 4.9 year). Aortic stiffness was characterized by echocardiography. Brachial artery endothelial function was assessed by flow-mediated dilatation (FMD%) and nitrate-mediated dilatation (NTG%). Results were compared between three subgroups: anthracycline treated, only chemotherapy treated and control subgroups. The cumulative anthracycline dose was less than 350 mg/m2. The healthy control subgroup had a significantly greater FMD response (13.13 ± 2.40 %), and lower stiffness index (2.08 ± 0.6) than both the anthracycline (7.12 ± 6.28 % and 6.45 ± 3.25, respectively) and only chemotherapy treated (10.17 ± 4.23 % and 4.12 ± 2.32, respectively) subgroups. In the anthracycline treated subgroup a significantly (p < 0.01) lower FMD% response, and higher stiffness index were detected than in the only chemotherapy treated subgroup. Higher triglyceride level, higher cumulative anthracycline dose and lower age at the start of treatment were found to be associated independently with impairment of FMD% response and aortic stiffness. We found a significant negative correlation between FMD and aortic stiffness (p < 0.001) and a positive correlation between FMD and distensibility (p < 0.0001) Childhood cancer long term survivors exposed to anthracycline treatment exhibit a marked preclinical vasculopathy, characterized by endothelial dysfunction and increased arterial stiffness, contributing to a deteriorated cardiovascular function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yeh ET, Tong AT, Lenihan DJ et al (2004) Cardiovascular complications of cancer therapy. Diagnosis, pathogenesis, and management. Circulation 109:3122–3131

    Article  PubMed  Google Scholar 

  2. Shankar SM, Marina N, Hudson MM et al (2008) Cardiovascular Disease Task Force of the Children’s Oncology Group. Monitoring for cardiovascular disease in survivors of childhood cancer: report from the Cardiovascular Disease Task Force of the Children’s Oncology Group. Pediatrics 121:387–396

    Article  Google Scholar 

  3. Hochster H, Wasserheit C, Speyer J (1995) Cardiotoxicity and cardioprotection during chemotherapy. Curr Opin Oncol 7:304–309

    Article  PubMed  CAS  Google Scholar 

  4. Bristow MR, Thompson PD, Martin RP, et al. Early anthracycline cardiotoxicity. Am J

  5. Dengel DR, Ness KK, Glasser SP et al (2008) Endothelial function in young adult survivors of childhood acute lymphoblastic leukemia. J Pediatr Hematol Oncol 30:20–25

    Article  PubMed  Google Scholar 

  6. Oeffinger KC, Buchanan GR, Eshelman DA et al (2001) Cardiovascular risk factors in young adult survivors of childhood acute lymphoblastic leukemia. J Pediatr Hematol Oncol 23:424–430

    Article  PubMed  CAS  Google Scholar 

  7. Widlansky ME, Gokce N, Keaney JF Jr et al (2003) The clinical implications of endothelial dysfunction. J Am Coll Cardiol 42:1149–1160

    Article  PubMed  CAS  Google Scholar 

  8. Arnett DK, Evans GW, Riley WA (1994) Arterial stiffness: a new cardiovascular risk factor? Am J Epidemiol 140:669–682

    PubMed  CAS  Google Scholar 

  9. Murata T, Yamawaki H, Yoshimoto R et al (2001) Chronic effect of doxorubicin on vascular endothelium assess by organ culture study. Life Sci 69:2685–2695

    Article  PubMed  CAS  Google Scholar 

  10. Wu S, Ko Y, Teng M et al (2002) Adriamycin-induced cardiomyocyte and endothelial cell apoptosis: in vitro and in vivo studies. J Mol Cell Cardiol 34:1595–1607

    Article  PubMed  CAS  Google Scholar 

  11. Amy YC, Clifford C, Gary D et al (2006) Anthracyclines cause endothelial injury in pediatric cancer patients: a pilot study. J Clin Oncol 24:925–928

    Article  Google Scholar 

  12. Bárdi E, Oláh AV, Bartyik K et al (2004) Late effects on renal glomerular and tubular function in childhood cancer survivors. Pediatr Blood Cancer 43(6):668–673

    Article  PubMed  Google Scholar 

  13. Schrappe M, Reiter A, Zimmermann M et al (2000) Long-term results of four consecutive trials in childhood ALL performed by the ALL-BFM study group from 1981 to 1995, Berlin-Frankfurt-Munster. Leukemia 14:2205–2222

    Article  PubMed  CAS  Google Scholar 

  14. Creutzig U, Ritter J, Zimmermann M et al (2001) Improved treatment results in high-risk pediatric acute myeloid leukemia patients after intensification with high-dose cytarabine and mitoxanthrone: results of Study Acute Myeloid Leukemia-Berlin-Frankfurt-Munster 93. J Clin Oncol 19:2705–2713

    PubMed  CAS  Google Scholar 

  15. Reiter A, Schrappe M, Parwaresch R et al (1995) Non-Hodgkin’s lymphomas of childhood and adolescence: results of a treatment stratified for biologic subtypes and stage – a report of the Berlin-Frankfurt-Munster Group. J Clin Oncol 13:359–372

    PubMed  CAS  Google Scholar 

  16. Schellong G, Pötter R, Brämswig J et al (1999) High cure rates and reduced long-term toxicity in pediatric Hodgkin’s disease: the German-Austrian multicenter trial DAL-HD-90. The German-Austrian Pediatric Hodgkin’s Disease Study Group. J Clin Oncol 17:3736–3744

    PubMed  CAS  Google Scholar 

  17. Marx M, Langer T, Graf N et al (2002) Multicentre analysis of anthracycline-induced cardiotoxicity in children following treatment according to the nephroblastoma studies SIOP No. 9/GPOH and SIOP 93-01/GPOH. Med Pediatr Oncol 39:18–24

    Article  PubMed  CAS  Google Scholar 

  18. Ozaki T, Flege S, Kevric M et al (2003) Osteosarcoma of the pelvis: experience of the Cooperative Osteosarcoma Study Group. J Clin Oncol 21:334–341

    Article  PubMed  Google Scholar 

  19. Koscielniak E, Jürgens H, Winkler K et al (1992) Treatment of soft tissue sarcoma in childhood and adolescence. A report of the German Cooperative Soft Tissue Sarcoma Study. Cancer 70:2557–2567

    Article  PubMed  CAS  Google Scholar 

  20. Tweddle DA, Pinkerton CR, Lewis IJ et al (2001) OPEC/OJEC for stage 4 neuroblastoma in children over 1 year of age. Med Pediatr Oncol 36:239–242

    Article  PubMed  CAS  Google Scholar 

  21. Celermajer DS, Sorensen KE, Gooch VM et al (1992) Non-invasive detection of endothelial dysfunction in children and adults at risk for atherosclerosis. Lancet 340:1111–1115

    Article  PubMed  CAS  Google Scholar 

  22. Kelly AS, Kaiser DR, Dengel DR et al (2004) Comparison of B-mode and echo-tracking methods of assessing flow-mediated dilation. Ultrasound Med Biol 30:1447–14

    Article  PubMed  Google Scholar 

  23. Celik T, Iyisoy A, Acikel C et al (2008) The comparative effects of metoprolol and perindopril on aortic elasticity in young patients with prehypertension. Blood Press Monit 13:169–176

    Article  PubMed  Google Scholar 

  24. Lacombe F, Dart A, Dewar E et al (1992) Arterial elastic properties in man: a comparison of echo-Doppler indices of aortic stiffness. Eur Heart J 13:1040–1045

    PubMed  CAS  Google Scholar 

  25. Fahey M, Ko HH, Srivastava S et al (2009) A comparison of echocardiographic techniques in determination of arterial elasticity in the pediatric population. Echocardiography 26:567–573

    Article  PubMed  Google Scholar 

  26. Chow AY, Chin C, Dahl G, Rosenthal DN (2006) Anthracyclines cause endothelial injury in pediatric cancer patients: a pilot study. J Clin Oncol 24:925–928

    Article  PubMed  CAS  Google Scholar 

  27. Chaosuwannakit N, D’Agostino R Jr, Hamilton CA et al (2010) Aortic stiffness increases upon receipt of anthracycline chemotherapy. J Clin Oncol 28(1):166–172

    Article  PubMed  CAS  Google Scholar 

  28. Hashimoto M, Akishita M, Eto M et al (1995) Modulation of endothelial-dependent flow-mediated dilatation of the brachial artery by sex and menstrual cycle. Circulation 92:3431–3435

    Article  PubMed  CAS  Google Scholar 

  29. Lewis TV, Dart AM, Chin-Dusting JP (1999) Endothelium-dependent relaxation by acetylcholine is impaired in hypertriglyceridemic humans with normal levels of plasma LDL cholesterol. J Am Coll Cardiol 33:805–812

    Article  PubMed  CAS  Google Scholar 

  30. Lupattelli G, Lombardini R, Schillaci G et al (2000) Flow-mediated vasoactivity and circulating adhesion molecules in hypertriglyceridemia: association with small, dense LDL cholesterol particles. Am Heart J 140:521–526

    Article  PubMed  CAS  Google Scholar 

  31. Lundman P, Eriksson MJ, Stühlinger M et al (2001) Mild to moderate hypertriglyceridemia in young men is associated with endothelial dysfunction and increased plasma concentrations of asymmetric dimethylarginine. J Am Coll Cardiol 38:111–116

    Article  PubMed  CAS  Google Scholar 

  32. Ceriello A, Taboga C, Tonutti L et al (2002) Evidence for an independent and cumulative effect of postprandial hypertriglyceridemia and hyperglycemia on endothelial dysfunction and oxidative stress generation. Circulation 106:1211–1218

    Article  PubMed  Google Scholar 

  33. Bae JH, Bassenge E, Lee HJ et al (2001) Postprandial hypertriglyceridemia impairs endothelial function by enhanced oxidant stress. Atherosclerosis 115:517–523

    Article  Google Scholar 

  34. Marjolen W, Sebastian JN, Aart-Jan L et al (2010) The metabolic syndrome in adult survivors of childhood cancer, a Review. J Pediatr Hematol Oncol 32:171–179

    Article  Google Scholar 

  35. de Bor H, Blok GJ, Voerman HJ et al (1994) Serum lipid levels in growth hormone-deficient men. Metab: Clin Exptl 43:199–203

    Article  Google Scholar 

  36. Angelina B, Olivecrona H, Ericsson S et al (1993) Growth hormone and low-density lipoproteins. Acta Endocrinol 128(suppl2):26–28

    Google Scholar 

  37. Darzy KH (2009) Radiation-induced hypopituitarism after cancer therapy: who, how and when to test. Nat Clin Pract Endocrinol Metab 5(2):88–89

    Article  PubMed  CAS  Google Scholar 

  38. Kitajima M, Hirai T, Maruyama N et al (2007) Asymptomatic cystic changes in the brain of children after cranial irradiation: frequency, latency, and relationship to age. Neuroradiology 49(5):411–417

    Article  PubMed  Google Scholar 

  39. Duquaine D, Hirsch GA, Chakrabarti A et al (2003) Rapid-onset endothelial dysfunction with adriamycin: evidence for a dysfunctional nitric oxide synthase. Vasc Med 8:101–107

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The help of Zsolt Karányi in performing statistical analysis is acknowledged. This work was supported by the grant of the Health Science Council of the Ministry of Education Republic of Hungary (ETT) No. 396/2006, 01-478/2009 and by the “For the leukemic children” foundations. The publication is supported by the TÁMOP 4.2.1./B-09/1/KONV-2010-0007 project. The project is co-financed by the European Union and the European Social Fund.

Conflict of Interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltan Jenei.

Additional information

Zoltan Jenei and Edit Bárdi Equal opportunity first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jenei, Z., Bárdi, E., Magyar, M.T. et al. Anthracycline Causes Impaired Vascular Endothelial Function and Aortic Stiffness in Long Term Survivors of Childhood Cancer. Pathol. Oncol. Res. 19, 375–383 (2013). https://doi.org/10.1007/s12253-012-9589-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-012-9589-6

Keywords

Navigation