Virologica Sinica

, Volume 34, Issue 6, pp 648–661 | Cite as

The Establishment and Validation of the Human U937 Cell Line as a Cellular Model to Screen Immunomodulatory Agents Regulating Cytokine Release Induced by Influenza Virus Infection

  • Ge Liu
  • Si Chen
  • Ao Hu
  • Li Zhang
  • Wenyu Sun
  • Jungang Chen
  • Wei Tang
  • Haiwei Zhang
  • Chunlan Liu
  • Chang Ke
  • Xulin ChenEmail author


Severe influenza infections are often associated with the excessive induction of pro-inflammatory cytokines, which is also referred to as “cytokine storms”. Several studies have shown that cytokine storms are directly associated with influenza-induced fatal acute lung injury and acute respiratory distress syndrome. Due to the narrow administration window, current antiviral therapies are often inadequate. The efforts to use immunomodulatory agents alone or in combination with antiviral agents in the treatment of influenza in animal models have resulted in the achievement of protective effects accompanied with reduced cytokine production. Currently, there are no immunomodulatory drugs for influenza available for clinical use. Animal models, despite being ideal to study the anti-inflammatory responses to influenza virus infection, are very costly and time-consuming. Therefore, there is an urgent need to establish fast and economical screening methods using cell-based models to screen and develop novel immunomodulatory agents. In this study, we screened seven human cell lines and found that the human monocytic cell U937 supports the replication of different subtypes of influenza viruses as well as the production of the important pro-inflammatory cytokines and was selected to develop the cell-based model. The U937 cell model was validated by testing a panel of known antiviral and immunomodulatory agents and screening a drug library consisting of 1280 compounds comprised mostly of FDA-approved drugs. We demonstrated that the U937 cell model is robust and suitable for the high-throughput screening of immunomodulators and antivirals against influenza infection.


Influenza Immunomodulatory agent U937 cell CCL2 CXCL10 



We thank Dr. Ding Gao and Ms. Juan Min (Center for instrumental analysis and metrology, Wuhan Institute of Virology, CAS) and Professor Xuefang An (Center for the animal experiments) for technical support. This work was supported by the Important Hubei Science and Technology Innovation Plan 2015ACA062 (to Xulin Chen) and the Natural Science Foundation of Hubei Province (2018CFB244, to Jungang Chen).

Author Contributions

GL and XC designed the experiments. GL, SC, AH, LZ, WS, JC, WT, HZ, CL, and CK performed the experiments. WT, CL, and HZ contributed to the reagents. GL and XC wrote and finalized the manuscript.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Animal and Human Rights Statement

This article does not contain any studies with human or animal subjects performed by any of the authors.

Supplementary material

12250_2019_145_MOESM1_ESM.pdf (389 kb)
Supplementary material 1 (PDF 389 kb)


  1. An L, Liu R, Tang W, Wu JG, Chen X (2014) Screening and identification of inhibitors against influenza A virus from a US drug collection of 1280 drugs. Antiviral Res 109:54–63PubMedCrossRefPubMedCentralGoogle Scholar
  2. Beigel JH, Farrar J, Han AM, Hayden FG, Hyer R, de Jong MD, Lochindarat S, Nguyen TK, Nguyen TH, Tran TH, Nicoll A, Touch S, Yuen KY, Writing Committee of the World Health Organization Consultation on Human Influenza AH (2005) Avian influenza A (H5N1) infection in humans. N Engl J Med 353:1374–1385PubMedCrossRefPubMedCentralGoogle Scholar
  3. Chen X, Liu S, Goraya MU, Maarouf M, Huang S, Chen JL (2018) Host immune response to influenza A virus infection. Front Immunol 9:320PubMedPubMedCentralCrossRefGoogle Scholar
  4. Damjanovic D, Divangahi M, Kugathasan K, Small CL, Zganiacz A, Brown EG, Hogaboam CM, Gauldie J, Xing Z (2011) Negative regulation of lung inflammation and immunopathology by TNF-alpha during acute influenza infection. Am J Pathol 179:2963–2976PubMedPubMedCentralCrossRefGoogle Scholar
  5. Davidson S (2018) Treating influenza infection, from now and into the future. Front Immunol 9:1946PubMedPubMedCentralCrossRefGoogle Scholar
  6. de Jong MD, Simmons CP, Thanh TT, Hien VM, Smith GJ, Chau TN, Hoang DM, Chau NV, Khanh TH, Dong VC, Qui PT, Cam BV, Ha Do Q, Guan Y, Peiris JS, Chinh NT, Hien TT, Farrar J (2006) Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat Med 12:1203–1207PubMedPubMedCentralCrossRefGoogle Scholar
  7. Deng R, Lu M, Korteweg C, Gao Z, McNutt MA, Ye J, Zhang T, Gu J (2008) Distinctly different expression of cytokines and chemokines in the lungs of two H5N1 avian influenza patients. J Pathol 216:328–336PubMedCrossRefPubMedCentralGoogle Scholar
  8. Enoki Y, Ishima Y, Tanaka R, Sato K, Kimachi K, Shirai T, Watanabe H, Chuang VT, Fujiwara Y, Takeya M, Otagiri M, Maruyama T (2015) Pleiotropic effects of levofloxacin, fluoroquinolone antibiotics, against influenza virus-induced lung injury. PLoS ONE 10:e0130248PubMedPubMedCentralCrossRefGoogle Scholar
  9. Florence JM, Krupa A, Booshehri LM, Davis SA, Matthay MA, Kurdowska AK (2018) Inhibiting Bruton’s tyrosine kinase rescues mice from lethal influenza-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 315:L52–L58PubMedPubMedCentralCrossRefGoogle Scholar
  10. Gao R, Bhatnagar J, Blau DM, Greer P, Rollin DC, Denison AM, Deleon-Carnes M, Shieh WJ, Sambhara S, Tumpey TM, Patel M, Liu L, Paddock C, Drew C, Shu Y, Katz JM, Zaki SR (2013) Cytokine and chemokine profiles in lung tissues from fatal cases of 2009 pandemic influenza A (H1N1): role of the host immune response in pathogenesis. Am J Pathol 183:1258–1268PubMedCrossRefPubMedCentralGoogle Scholar
  11. Garcia A, Serrano A, Abril E, Jimenez P, Real LM, Canton J, Garrido F, Ruiz-Cabello F (1999) Differential effect on U937 cell differentiation by targeting transcriptional factors implicated in tissue- or stage-specific induced integrin expression. Exp Hematol 27:353–364PubMedCrossRefPubMedCentralGoogle Scholar
  12. Genin M, Clement F, Fattaccioli A, Raes M, Michiels C (2015) M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. BMC Cancer 15:577PubMedPubMedCentralCrossRefGoogle Scholar
  13. Gerritz SW, Cianci C, Kim S, Pearce BC, Deminie C, Discotto L, McAuliffe B, Minassian BF, Shi SH, Zhu SR, Zhai WX, Pendri A, Li G, Poss MA, Edavettal S, McDonnell PA, Lewis HA, Maskos K, Mortl M, Kiefersauer R, Steinbacher S, Baldwin ET, Metzler W, Bryson J, Healy MD, Philip T, Zoeckler M, Schartman R, Sinz M, Leyva-Grado VH, Hoffmann HH, Langley DR, Meanwell NA, Krystal M (2011) Inhibition of influenza virus replication via small molecules that induce the formation of higher-order nucleoprotein oligomers. Proc Natl Acad Sci USA 108:15366–15371PubMedCrossRefPubMedCentralGoogle Scholar
  14. Giulietti A, Overbergh L, Valckx D, Decallonne B, Bouillon R, Mathieu C (2001) An overview of real-time quantitative PCR: applications to quantify cytokine gene expression. Methods 25:386–401PubMedCrossRefPubMedCentralGoogle Scholar
  15. Hay AJ, Gregory V, Douglas AR, Lin YP (2001) The evolution of human influenza viruses. Philos Trans R Soc Lond B Biol Sci 356:1861–1870PubMedPubMedCentralCrossRefGoogle Scholar
  16. Hoffmann HH, Palese P, Shaw ML (2008) Modulation of influenza virus replication by alteration of sodium ion transport and protein kinase C activity. Antiviral Res 80:124–134PubMedPubMedCentralCrossRefGoogle Scholar
  17. Hrincius ER, Liedmann S, Finkelstein D, Vogel P, Gansebom S, Samarasinghe AE, You D, Cormier SA, McCullers JA (2015) Acute lung injury results from innate sensing of viruses by an ER stress pathway. Cell Rep 11:1591–1603PubMedPubMedCentralCrossRefGoogle Scholar
  18. Hui DS, Lee N (2013) Adjunctive therapies and immunomodulating agents for severe influenza. Influenza Other Respir Viruses 7(Suppl 3):52–59PubMedPubMedCentralCrossRefGoogle Scholar
  19. Ichikawa A, Kuba K, Morita M, Chida S, Tezuka H, Hara H, Sasaki T, Ohteki T, Ranieri VM, dos Santos CC, Kawaoka Y, Akira S, Luster AD, Lu B, Penninger JM, Uhlig S, Slutsky AS, Imai Y (2013) CXCL10-CXCR19 enhances the development of neutrophil-mediated fulminant lung injury of viral and nonviral origin. Am J Respir Crit Care Med 187:65–77PubMedPubMedCentralCrossRefGoogle Scholar
  20. Iwasaki A, Pillai PS (2014) Innate immunity to influenza virus infection. Nat Rev Immunol 14:315–328PubMedPubMedCentralCrossRefGoogle Scholar
  21. Khoufache K, Berri F, Nacken W, Vogel AB, Delenne M, Camerer E, Coughlin SR, Carmeliet P, Lina B, Rimmelzwaan GF, Planz O, Ludwig S, Riteau B (2013) PAR1 contributes to influenza A virus pathogenicity in mice. J Clin Invest 123:206–214PubMedCrossRefPubMedCentralGoogle Scholar
  22. Kozak W, Zheng H, Conn CA, Soszynski D, Ploeg LHVD, Kluger MJ (1995) Thermal and behavioral effects of lipopolysaccharide and influenza in interleukin-1 beta-deficient mice. Am J Physiol Regul Integr Comp Physiol 269:R969–R977CrossRefGoogle Scholar
  23. Lauder SN, Taylor PR, Clark SR, Evans RL, Hindley JP, Smart K, Leach H, Kidd EJ, Broadley KJ, Jones SA, Wise MP, Godkin AJ, O’Donnell V, Gallimore AM (2011) Paracetamol reduces influenza-induced immunopathology in a mouse model of infection without compromising virus clearance or the generation of protective immunity. Thorax 66:368–374PubMedPubMedCentralCrossRefGoogle Scholar
  24. Liu Z, Guo Z, Wang G, Zhang D, He H, Li G, Liu Y, Higgins D, Walsh A, Shanahan-Prendergast L, Lu J (2009) Evaluation of the efficacy and safety of a statin/caffeine combination against H5N1, H3N2 and H1N1 virus infection in BALB/c mice. Eur J Pharm Sci 38:215–223PubMedCrossRefPubMedCentralGoogle Scholar
  25. Liu Q, Liu DY, Yang ZQ (2013) Characteristics of human infection with avian influenza viruses and development of new antiviral agents. Acta Pharmacol Sin 34:1257–1269PubMedPubMedCentralCrossRefGoogle Scholar
  26. Liu Q, Zhou YH, Yang ZQ (2016) The cytokine storm of severe influenza and development of immunomodulatory therapy. Cell Mol Immunol 13:3–10PubMedCrossRefPubMedCentralGoogle Scholar
  27. Mehrbod P, Omar AR, Hair-Bejo M, Haghani A, Ideris A (2014) Mechanisms of action and efficacy of statins against influenza. Biomed Res Int 2014:872370PubMedPubMedCentralCrossRefGoogle Scholar
  28. Millius A, Weiner OD (2009) Chemotaxis in neutrophil-like HL-60 cells. Methods Mol Biol 571:167–177PubMedPubMedCentralCrossRefGoogle Scholar
  29. Mordstein M, Kochs G, Dumoutier L, Renauld JC, Paludan SR, Klucher K, Staeheli P (2008) Interferon-lambda contributes to innate immunity of mice against influenza A virus but not against hepatotropic viruses. PLoS Pathog 4:e1000151PubMedPubMedCentralCrossRefGoogle Scholar
  30. Moseley CE, Webster RG, Aldridge JR (2010) Peroxisome proliferator-activated receptor and AMP-activated protein kinase agonists protect against lethal influenza virus challenge in mice. Influenza Other Respir Viruses 4:307–311PubMedPubMedCentralCrossRefGoogle Scholar
  31. Pulendran B, Maddur MS (2015) Innate immune sensing and response to influenza. Curr Top Microbiol Immunol 386:23–71PubMedPubMedCentralGoogle Scholar
  32. Ramos I, Fernandez-Sesma A (2015) Modulating the innate immune response to influenza A virus: potential therapeutic use of anti-inflammatory drugs. Front Immunol 6:361PubMedPubMedCentralCrossRefGoogle Scholar
  33. Reed LJ, Muench H (1938) A simple method of estimating fifty per cent endpoints. Am J Epidemiol 27:493–497CrossRefGoogle Scholar
  34. Sato K, Suga M, Akaike T, Fujii S, Muranaka H, Doi T, Maeda H, Ando M (1998) Therapeutic effect of erythromycin on influenza virus-induced lung injury in mice. Am J Respir Crit Care Med 157:853–857PubMedCrossRefPubMedCentralGoogle Scholar
  35. Sharma G, Champalal Sharma D, Hwei Fen L, Pathak M, Bethur N, Pendharkar V, Peiris M, Altmeyer R (2013) Reduction of influenza virus-induced lung inflammation and mortality in animals treated with a phosophodisestrase-4 inhibitor and a selective serotonin reuptake inhibitor. Emerg Microbes Infect 2:e54PubMedPubMedCentralCrossRefGoogle Scholar
  36. Short KR, Kroeze EJBV, Fouchier RAM, Kuiken T (2014) Pathogenesis of influenza-induced acute respiratory distress syndrome. Lancet Infect Dis 14:57–69PubMedCrossRefPubMedCentralGoogle Scholar
  37. Smee DF, Bailey KW, Wong MH, O’Keefe BR, Gustafson KR, Mishin VP, Gubareva LV (2008) Treatment of influenza A (H1N1) virus infections in mice and ferrets with cyanovirin-N. Antiviral Res 80:266–271PubMedPubMedCentralCrossRefGoogle Scholar
  38. Taubenberger JK, Morens DM (2006) 1918 influenza: the mother of all pandemics. Emerg Infect Dis 12:15–22PubMedPubMedCentralCrossRefGoogle Scholar
  39. Tavares LP, Teixeira MM, Garcia CC (2017) The inflammatory response triggered by Influenza virus: a two edged sword. Inflamm Res 66:283–302PubMedCrossRefPubMedCentralGoogle Scholar
  40. Teijaro JR, Walsh KB, Cahalan S, Fremgen DM, Roberts E, Scott F, Martinborough E, Peach R, Oldstone MB, Rosen H (2011) Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection. Cell 146:980–991PubMedPubMedCentralCrossRefGoogle Scholar
  41. Tisoncik JR, Korth MJ, Simmons CP, Farrar J, Martin TR, Katze MG (2012) Into the eye of the cytokine storm. Microbiol Mol Biol Rev 76:16–32PubMedPubMedCentralCrossRefGoogle Scholar
  42. To KK, Hung IF, Li IW, Lee KL, Koo CK, Yan WW, Liu R, Ho KY, Chu KH, Watt CL, Luk WK, Lai KY, Chow FL, Mok T, Buckley T, Chan JF, Wong SS, Zheng B, Chen H, Lau CC, Tse H, Cheng VC, Chan KH, Yuen KY (2010) Delayed clearance of viral load and marked cytokine activation in severe cases of pandemic H1N1 2009 influenza virus infection. Clin Infect Dis 50:850–859PubMedCrossRefGoogle Scholar
  43. Tsai AW, McNeil CF, Leeman JR, Bennett HB, Nti-Addae K, Huang C, Germann UA, Byrn RA, Berlioz-Seux F, Rijnbrand R, Clark MP, Charifson PS, Jones SM (2015) Novel ranking system for identifying efficacious anti-influenza virus PB2 inhibitors. Antimicrob Agents Chemother 59:6007–6016PubMedPubMedCentralCrossRefGoogle Scholar
  44. Wang W, Yang P, Zhong Y, Zhao Z, Xing L, Zhao Y, Zou Z, Zhang Y, Li C, Li T, Wang C, Wang Z, Yu X, Cao B, Gao X, Penninger JM, Wang X, Jiang C (2013) Monoclonal antibody against CXCL-10/IP-10 ameliorates influenza A (H1N1) virus induced acute lung injury. Cell Res 23:577–580PubMedPubMedCentralCrossRefGoogle Scholar
  45. Wareing MD, Lyon AB, Lu B, Gerard C, Sarawar SR (2004) Chemokine expression during the development and resolution of a pulmonary leukocyte response to influenza A virus infection in mice. J Leukoc Biol 76:886–895PubMedCrossRefPubMedCentralGoogle Scholar
  46. WHO (2018) Influenza (seasonal). World Health Organization. Accessed 26 Apr 2019
  47. Zhang JH, Chung TDY, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4:67–73PubMedCrossRefPubMedCentralGoogle Scholar
  48. Zheng BJ, Chan KW, Lin YP, Zhao GY, Chan C, Zhang HJ, Chen HL, Wong SS, Lau SK, Woo PC, Chan KH, Jin DY, Yuen KY (2008) Delayed antiviral plus immunomodulator treatment still reduces mortality in mice infected by high inoculum of influenza A/H5N1 virus. Proc Natl Acad Sci USA 105:8091–8096PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Wuhan Institute of Virology, CAS 2019

Authors and Affiliations

  1. 1.State Key Laboratory of VirologyWuhan Institute of Virology, Chinese Academy of SciencesWuhanChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Wuhan Virolead Biopharmaceutical CompanyWuhanChina

Personalised recommendations