Virologica Sinica

, Volume 34, Issue 1, pp 9–21 | Cite as

Recent Progress on Functional Genomics Research of Enterovirus 71

  • Huiqiang Wang
  • Yuhuan LiEmail author


Enterovirus 71 (EV71) is one of the main pathogens that causes hand-foot-and-mouth disease (HFMD). HFMD caused by EV71 infection is mostly self-limited; however, some infections can cause severe neurological diseases, such as aseptic meningitis, brain stem encephalitis, and even death. There are still no effective clinical drugs used for the prevention and treatment of HFMD. Studying EV71 protein function is essential for elucidating the EV71 replication process and developing anti-EV71 drugs and vaccines. In this review, we summarized the recent progress in the studies of EV71 non-coding regions (5′ UTR and 3′ UTR) and all structural and nonstructural proteins, especially the key motifs involving in viral infection, replication, and immune regulation. This review will promote our understanding of EV71 virus replication and pathogenesis, and will facilitate the development of novel drugs or vaccines to treat EV71.


Enterovirus 71 (EV71) Functional genomics Structural protein Nonstructural protein Viral protein function 



The work was supported by the National Natural Science Foundation of China (Grant 81503118) and CAMS Initiative for Innovative Medicine (CAMS-I2 M-1-010); The National Science and Technology Major Project of the Ministry of Science and Technology of China (2018ZX09711003-005-004).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Animal and Human Rights Statement

The authors declare that they have no conflict of interest. This article does not contain any studies with human or animal subjects performed by any of the authors.


  1. Agirre A, Barco A, Carrasco L, Nieva JL (2002) Viroporin-mediated membrane permeabilization. Pore formation by nonstructural poliovirus 2B protein. Biol Chem 277:40434–40441CrossRefGoogle Scholar
  2. Bedard KM, Semler BL (2004) Regulation of picornavirus gene expression. Microbes Infect 6:702–713CrossRefGoogle Scholar
  3. Caine EA, Moncla LH, Ronderos MD, Friedrich TC, Osorio JE (2016) A single mutation in the VP1 of enterovirus 71 is responsible for increased virulence and neurotropism in adult interferon-deficient mice. J Virol 90:8592–8604CrossRefGoogle Scholar
  4. Cardosa MJ, Perera D, Brown BA, Cheon D, Chan HM, Chan KP, Cho H, McMinn P (2003) Molecular epidemiology of human enterovirus 71 strains and recent outbreaks in the Asia-Pacific region: comparative analysis of the VP1 and VP4 genes. Emerg Infect Dis 9:461–468CrossRefGoogle Scholar
  5. Chang CK, Wu SR, Chen YC, Lee KJ, Chung NH, Lu YJ, Yu SL, Liu CC, Chow YH (2018) Mutations in VP1 and 5′-UTR affect enterovirus 71 virulence. Sci Rep 8:6688CrossRefGoogle Scholar
  6. Chen XM, Zhang Q, Li JH, Cao W, Zhang JX, Zhang L, Zhang WL, Shao ZJ, Yan YP (2010) Analysis of recombination and natural selection in human enterovirus 71. Virology 398:251–261CrossRefGoogle Scholar
  7. Chen SC, Chang LY, Wang YW, Chen YC, Weng KF, Shih SR, Shih HM (2011) Sumoylation promoted enterovirus 71 3C degradation correlates with a reduction in viralreplication and cell apoptosis. J Biol Chem 286:31373–31384CrossRefGoogle Scholar
  8. Chen P, Song Z, Qi Y, Feng XF, Xu NQ, Sun YY, Wu X, Yao X, Mao QY, Li XL, Dong WJ, Wan XB, Huang N, Shen XL, Liang ZL, Li WH (2012) Molecular determinants of enterovirus 71 viral entry: cleft around GLN-172 on VP1 proteininteracts with variable region on scavenge receptor B 2. J Biol Chem 287:6406–6420CrossRefGoogle Scholar
  9. Chen DY, Feng CH, Tian XY, Zheng N, Wu ZW (2018) Promyelocytic leukemia restricts enterovirus 71 replication by inhibiting autophagy. Front Immunol 9:1268CrossRefGoogle Scholar
  10. Ch’ng WC, Stanbridge EJ, Wong KT, Ong KC, Yusoff K, Shafee N (2012) Immunization with recombinant enterovirus 71 viral capsid protein 1 fragment stimulated antibody responses in hamsters. Virol J 9:155CrossRefGoogle Scholar
  11. Choe SS, Dodd DA (2005) Kirkegaard K. Inhibition of cellular protein secretion by picornaviral 3A proteins. Virology 337:18–29CrossRefGoogle Scholar
  12. Cong HL, Ning D, Tian HC, Yang Y, Zhang W, Zhang H, Zhang WL, Song L, Tien P (2013) Enterovirus 71 VP1 Activates Calmodulin-Dependent Protein Kinase II and Results in the Rearrangement of Vimentin in Human Astrocyte Cells. PLoS ONE 8:e73900CrossRefGoogle Scholar
  13. Cong HL, Du N, Yang Y, Song L, Zhang WL, Tien P (2016) Enterovirus 71 2B induces cell apoptosis by directly inducing the conformational activation of the proapoptotic protein Bax. J Virol 90:9862–9877CrossRefGoogle Scholar
  14. Cui S, Wang J, Fan TT, Qin B, Guo L, Lei XB, Wang JW, Wang MT, Jin Q (2011) Crystal structure of human enterovirus 71 3C protease. J Mol Biol 408:449–461CrossRefGoogle Scholar
  15. De Jong AS, Wessels E, Dijkman HBPM, Galama JM, Melchers WJ, Willems PH, van Kuppeveld FJ (2003) Determinants for membrane association and permeabilization of the coxsackie virus 2B protein and the identification of the Golgi complex as the target organelle. J Biol Chem 278:1012–1021CrossRefGoogle Scholar
  16. Deng JX, Nie XJ, Lei YF, Ma CF, Xu DL, Li B, Xu ZK, Zhang GC (2012) The highly conserved 5’ untranslated region as an effective target towards the inhibition of Enterovirus 71 replication by unmodified and appropriate 2’-modified siRNAs. J Biomed Sci 19:73CrossRefGoogle Scholar
  17. Du N, Cong HL, Tian HC, Zhang H, Zhang WL, Song L, Tien P (2014) Cell surface vimentin is an attachment receptor for enterovirus 71. J Virol 88:5816–5833CrossRefGoogle Scholar
  18. Du HW, Yin PQ, Yang XJ, Zhang LL, Jin Q, Zhu GF (2015) Enterovirus 71 2C protein inhibits NF-κB activation by binding to RelA(p65). Sci Rep 5:14302CrossRefGoogle Scholar
  19. Feng CH, Fu YX, Chen DY, Wang HR, Su AR, Zhang L, Chang L, Zheng N, Wu ZW (2017) miR-127-5p negatively regulates enterovirus 71 replication by directly targeting SCARB2. FEBS Open Bio 7:747–758CrossRefGoogle Scholar
  20. Fernandez-Miragall O, Lopez de Quinto S, Martinez-Salas E (2009) Relevance of RNA structure for the activity of picornavirus IRES elements. Virus Res 139:172–182CrossRefGoogle Scholar
  21. Foo DG, Alonso S, Phoon MC, Ramachandran NP, Chow VT, Poh CL (2007) Identification of neutralizing linear epitopes from the VP1 capsid protein of Enterovirus 71 using synthetic peptides. Virus Res 125:61–68CrossRefGoogle Scholar
  22. Foo DG, Macary PA, Alonso S, Poh CL (2008) Identification of human CD4 T-cell epitopes on the P1 capsid protein of enterovirus 71. Viral Immunol 21:215–224CrossRefGoogle Scholar
  23. Fujii K, Sudaka Y, Takashino A, Kobayashi K, Kataoka C, Suzuki T, Iwata-Yoshikawa N, Kotani O, Ami Y, Shimizu H, Nagata N, Mizuta K, Matsuzaki Y, Koike S (2018) VP1 amino acid residue 145 of enterovirus 71 is a key residue for its receptor attachment and resistance to neutralizing antibody during cynomolgus monkey infection. J Virol pii:JVI.00682-18CrossRefGoogle Scholar
  24. Fujita K, Krishnakumar SS, Franco D, Paul AV, London E, Wimmer E (2007) Membrane topography of the hydrophobic anchor sequence of poliovirus 3A and 3AB proteins and the functional effect of 3A/3AB membrane association upon RNA replication. Biochemistry 46:5185–5199CrossRefGoogle Scholar
  25. Giachetti C, Hwang SS, Semler BL (1992) Cis-acting lesions targeted to the hydrophobic domain of a Poliovirus membrane-protein involved in RNA replication. J Virol 66:6045–6057Google Scholar
  26. Guan HX, Tian J, Qin B, Wojdyla JA, Wang B, Zhao ZD, Wang MT, Cui S (2017) Crystal structure of 2C helicase from enterovirus 71. Sci Adv 3:e1602573CrossRefGoogle Scholar
  27. Han Y, Wang LY, Cui J, Song Y, Luo Z, Chen JB, Xiong Y, Zhang Q, Liu F, Ho WZ, Liu YL, Wu KL, Wu JG (2016) SIRT1 inhibits EV71 genome replication and RNA translation by interfering with the viral polymerase and 5′UTR RNA. J Cell Sci 129:4534–4547CrossRefGoogle Scholar
  28. Hellen CU, Lee CK, Wimmer E (1992) Determinants of substrate recognition by poliovirus 2A proteinase. J Virol 66:3330–3338Google Scholar
  29. Herold J, Andino R (2001) Poliovirus RNA replication requires genome circularization through a protein-protein bridge. Mol Cell 7:581–591CrossRefGoogle Scholar
  30. Herrero LJ, Lee CS, Hurrelbrink RJ, Chua BH, Chua KB, McMinn PC (2003) Molecular epidemiology of enterovirus 71 in peninsular Malaysia, 1997-2000. Arch Virol 148:1369–1385CrossRefGoogle Scholar
  31. Hsu YY, Liu YN, Wang W, Kao FJ, Kung SH (2007) In vivo dynamics of enterovirus protease revealed by fluorescence resonance emissiontransfer (FRET) based on a novel FRET pair. Biochem Biophys Res Commun 353:939–945CrossRefGoogle Scholar
  32. Hu YC, Hsu JT, Huang JH, Ho MS, Ho YC (2003) Formation of enteroviruslike particle aggregates by recombinant baculoviruses coexpressing P1 and 3CD in insect cells. Biotechnol Lett 25:919–925CrossRefGoogle Scholar
  33. Huang SC, Hsu YW, Wang HC, Huang SW, Kiang D, Tsai HP, Wang SM, Liu CC, Lin KH, Su IJ, Wang JR (2008) Appearance of intratypic recombination of enterovirus 71 in Taiwan from 2002 to 2005. Virus Res 131:250–259CrossRefGoogle Scholar
  34. Huang PN, Lin JY, Locker N, Kung YA, Hung CT, Lin JY, Huang HI, Li ML, Shih SR (2011) Far Upstream Element Binding Protein 1 Binds the Internal Ribosomal Entry Site of Enterovirus 71 and Enhances Viral Translation and Viral Growth. Nucleic Acids Res 19:9633–9648CrossRefGoogle Scholar
  35. Huang SW, Wang YF, Yu CK, Su IJ, Wang JR (2012) Mutations in VP2 and VP1 capsid proteins increase infectivity and mouse lethality of enterovirus 71 by virus binding and RNA accumulation enhancement. Virology 422:132–143CrossRefGoogle Scholar
  36. Hung CT, Kung YA, Li ML, Brewer G, Lee KM, Liu ST, Shih SR (2016) Additive Promotion of Viral Internal Ribosome Entry Site-Mediated Translation by Far Upstream Element-Binding Protein 1 and an Enterovirus 71-Induced Cleavage Product. PLoS Pathog 12:e1005959CrossRefGoogle Scholar
  37. Jiang HB, Weng LY, Zhang N, Arita M, Li RQ, Chen LJ, Toyoda T (2011) Biochemical characterization of enterovirus 71 3D RNA polymerase. Biochim Biophys Acta 1809:211–219CrossRefGoogle Scholar
  38. Johnson KL, Sarnow P (1991) Three poliovirus 2B mutants exhibit noncomplementable defects in viral RNA amplification and display dosage-dependent dominance over wild-type poliovirus. J Virol 65:4341–4349Google Scholar
  39. Kiener TK, Jia Q, Lim XF, He F, Meng T, Chow VT, Kwang J (2012) Characterization and specificity of the linear epitope of the Enterovirus 71 VP2 protein. Virol J 9:55CrossRefGoogle Scholar
  40. Kiener TK, Jia Q, Meng T, Chow VT, Kwang J (2014) A novel universal neutralizing monoclonal antibody against enterovirus 71 that targets the highlyconserved “knob” region of VP3 protein. PLoS Negl Trop Dis 8:e2895CrossRefGoogle Scholar
  41. Kobayashi K, Sudaka Y, Takashino A, Imura A, Fujii K, Koike S (2018) Amino acid variation at VP1-145 of enterovirus 71 determines attachment receptor usage and neurovirulence in human scavenger receptor B2 transgenic mice. J Virol pii:JVI.00681-18CrossRefGoogle Scholar
  42. Kuo RL, Kung SH, Hsu YY, Liu WT (2002a) Infection with enterovirus 71 or expression of its 2A protease induces apoptotic cell death. J Gen Virol 83:1367–1376CrossRefGoogle Scholar
  43. Kuo RL, Li ML, Hsu TA, Chang SC, Lee JC, Chen CC, Stollar V, Shih SR (2002b) The 3C protease activity of enterovirus 71 induces human neural cell apoptosis. Virology 293:386–395CrossRefGoogle Scholar
  44. Kuo CJ, Shie JJ, Fang JM, Yen GR, Hsu JT, Liu HG, Tseng SN, Chang SC, Lee CY, Shih SR, Liang PH (2008) Design, synthesis, and evaluation of 3C protease inhibitors as anti-enterovirus 71 agents. Bioorg Med Chem 16:7388–7398CrossRefGoogle Scholar
  45. Kuo RL, Kao LT, Lin SJ, Wang RY, Shih SR (2013) MDA5 plays a crucial role in enterovirus 71 RNA-mediated IRF3 activation. PLoS ONE 8:e63431CrossRefGoogle Scholar
  46. Lal SK, Kumar P, Yeo WM, Kar-Roy A, Chow VT (2006) The VP1 protein of human enterovirus 71 self-associates via an interaction domain spanning amino acids 66-297. J Med Virol 78:582–590CrossRefGoogle Scholar
  47. Lee JC, Shih SR, Chang TY, Tseng HY, Shih YF, Yen KJ, Chen WC, Shie JJ, Fang JM, Liang PH, Chao YS, Hsu JT (2008) A mammalian cellbased reverse two-hybrid system for functional analysis of 3C viral protease of human enterovirus 71. Anal Biochem 375:115–123CrossRefGoogle Scholar
  48. Lee PH, Liu CM, Ho TS, Tsai YC, Lin CC, Wang YF, Chen YL, Yu CK, Wang SM, Liu CC, Shiau AL, Lei HY, Chang CP (2015) Enterovirus 71 Virion- Associated Galectin-1 Facilitates Viral Replication and Stability. PLoS ONE 10:e0116278CrossRefGoogle Scholar
  49. Lei XB, Liu XL, Ma YJ, Sun ZM, Yang YW, Jin Q, He B, Wang JW (2010) The 3C protein of enterovirus 71 inhibits retinoid acid-inducible gene I-mediated interferon regulatory factor 3 activation and type i interferon responses. J Virol 84:8051–8061CrossRefGoogle Scholar
  50. Lei XB, Sun ZM, Liu XL, Jin Q, He B, Wang JW (2011) Cleavage of the adaptor protein trif by enterovirus 71 3C inhibits antiviral responses mediated by toll-like receptor 3. J Virol 85:8811–8818CrossRefGoogle Scholar
  51. Lei XB, Xiao X, Xue QH, Jin Q, He B, Wang JW (2013) Cleavage of interferon regulatory factor 7 by enterovirus 71 3C suppresses cellular responses. J Virol 87:1690–1698CrossRefGoogle Scholar
  52. Lei XB, Han N, Xiao X, Jin Q, He B, Wang JW (2014) Enterovirus 71 3C inhibits cytokine expression through cleavage of the TAK1/TAB 1/TAB 2/TAB 3complex. J Virol 88:9830–9841CrossRefGoogle Scholar
  53. Lei XB, Xiao X, Zhang ZZ, Ma YJ, Qi JL, Wu C, Xiao Y, Zhou Z, He B, Wang JW (2017) The Golgi protein ACBD3 facilitates Enterovirus 71 replication by interacting with 3A. Sci Rep 7:44592CrossRefGoogle Scholar
  54. Li ML, Hsu TA, Chen TC, Chang SC, Lee JC, Chen CC, Stollar V, Shih SR (2002) The 3C protease activity of enterovirus 71 induces human neural cell apoptosis. Virology 293:386–395CrossRefGoogle Scholar
  55. Li Q, Zheng ZH, Liu Y, Zhang ZF, Liu QS, Meng J, Ke XL, Hu QX, Wang HZ (2016) 2C proteins of enteroviruses suppress IKKα phosphorylation by recruiting protein phosphatase 1. J Virol 90:5141–5151CrossRefGoogle Scholar
  56. Li J, Yao YF, Chen Y, Xu X, Lin YQ, Yang ZL, Qiao WT, Tan J (2017) Enterovirus 71 3C promotes apoptosis through cleavage of PinX1, a telomere binding protein. J Virol 91:pii:e02016-16Google Scholar
  57. Li XH, Huang Y, Sun MH, Ji H, Dou H, Hu J, Yan YF, Wang X, Chen LY (2018a) Honeysuckle-encoded microRNA2911 inhibits Enterovirus 71 replication via targeting VP1 gene. Antiviral Res 152:117–123CrossRefGoogle Scholar
  58. Li ZL, Ning SS, Su X, Liu X, Wang H, Liu Y, Zheng WW, Zheng BS, Yu XF, Zhang WY (2018b) Enterovirus 71 antagonizes the inhibition of the host intrinsic antiviral factor A3G. Nucleic Acids Res.
  59. Lin JY, Li ML, Huang PN, Chien KY, Horng JT, Shih SR (2008) Heterogeneous nuclear ribonuclear protein K interacts with the enterovirus 71 5′ untranslated region and participates in virus replication. J Gen Virol 89:2540–2549CrossRefGoogle Scholar
  60. Lin JY, Chen TC, Weng KF, Chang SC, Chen LL, Shih SR (2009a) Viral and host proteins involved in picornavirus life cycle. J Biomed Sci 16:103–116CrossRefGoogle Scholar
  61. Lin JY, Li ML, Shih SR (2009b) Far upstream element binding protein 2 interacts with enterovirus 71 internal ribosomal entry site and negatively regulates viral translation. Nucleic Acids Res 37:47–59CrossRefGoogle Scholar
  62. Lin JY, Shih SR, Pan M, Li C, Lue CF, Stollar V, Li ML (2009c) hnRNP A1 interacts with the 5′ untranslated regions of enterovirus 71 and Sindbis virus RNA and is required for viral replication. J Virol 83:6106–6114CrossRefGoogle Scholar
  63. Lin JY, Li ML, Brewer G (2014) mRNA decay factor AUF1 binds the internal ribosomal entry site of enterovirus 71 and inhibits virus replication. PLoS ONE 9:e103827CrossRefGoogle Scholar
  64. Lin JY, Brewer G, Li ML (2015) HuR and Ago2 Bind the Internal Ribosome Entry Site of Enterovirus 71 and Promote Virus Translation and Replication. PLoS ONE 10:e0140291CrossRefGoogle Scholar
  65. Liu Y, Franco D, Paul AV, Wimmer E (2007) Tyrosine 3 of poliovirus terminal peptide VPg(3B) has an essential function in RNA replication in the context of its precursor protein, 3AB. J Virol 81:5669–5684CrossRefGoogle Scholar
  66. Lu J, Yi L, Zhao J, Yu J, Chen Y, Lin MC, Kung HF, He ML (2012) Enterovirus 71 disrupts interferon signaling by reducing the level of interferon receptor 1. J Virol 86:3767–3776CrossRefGoogle Scholar
  67. Luo Z, Dong XC, Li YX, Zhang Q, Kim C, Song Y, Kang L, Liu YL, Wu KL, Wu JG (2014) PolyC-Binding Protein 1 Interacts with 5,-Untranslated Region of Enterovirus 71 RNA in Membrane- Associated Complex to Facilitate Viral Replication. PLoS ONE 9:e87491CrossRefGoogle Scholar
  68. Madan V, Sanchez-Martinez S, Vedovato N, Rispoli G, Carrasco L, Nieva JL (2007) Plasma membrane-porating domain in poliovirus 2B protein. A short peptide mimics viroporin activity. J Mol Biol 374:951–964CrossRefGoogle Scholar
  69. McMinn PC (2002) An overview of the evolution of enterovirus 71 and its clinical and public health significance. FEMS Microbiol Rev 26:91–107CrossRefGoogle Scholar
  70. Morley SJ, Curtis PS, Pain VM (1997) eIF4G: translation’s mystery factor begins to yield its secrets. RNA 3:1085–1104Google Scholar
  71. Nishimura Y, Lee H, Hafenstein S, Kataoka C, Wakita T, Bergelson JM, Shimizu H (2013) Enterovirus 71 Binding to PSGL-1 on Leukocytes: vP1-145 Acts as a Molecular Switch to Control Receptor Interaction. PLoS Pathog 9:e1003511CrossRefGoogle Scholar
  72. Paul AV, Yin J, Mugavero J, Rieder E, Liu Y, Wimmer E (2003) A “slide-back” mechanism for the initiation of protein-primed RNA synthesis by the RNA olymerase of poliovirus. J Biol Chem 278:43951–43960CrossRefGoogle Scholar
  73. Qiu J (2008) Enterovirus 71 infection: a new threat to global health. Lancet Neurol 7:868–869CrossRefGoogle Scholar
  74. Qiu Y, Xu Y, Zhang Y, Zhou H, Deng YQ, Li XF, Miao M, Zhang Q, Zhong B, Hu Y, Zhang FC, Wu L, Qin CF, Zhou X (2017) Human Virus-Derived Small RNAs Can Confer Antiviral Immunity in Mammals. Immunity 46:992–1004CrossRefGoogle Scholar
  75. Rowlands DJ, Tuthill TJ, Groppelli E, Rowlands DJ (2010) Picornaviruses. Curr Top Microbiol Immunol 343:43–89Google Scholar
  76. Sharma R, Raychaudhuri S, Dasgupta A (2004) Nuclear entry of poliovirus protease-polymerase precursor 3CD: implications for host cell transcription shut-off. Virology 320:195–205CrossRefGoogle Scholar
  77. Shih SR, Chiang C, Chen TC, Wu CN, Hsu JT, Lee JC, Hwang MJ, Li ML, Chen GW, Ho MS (2004) Mutations at KFRDI and VGK domains of enterovirus 71 3C protease affect its RNA binding and proteolytic activities. J Biomed Sci 11:239–248CrossRefGoogle Scholar
  78. Silvestri LS, Parilla JM, Morasco BJ, Ogram SA, Flanegan JB (2006) Relationship between poliovirus negative-strand RNA synthesis and the length of the 3′ poly(A) tail. Virology 345:509–519CrossRefGoogle Scholar
  79. Sim AC, Luhur A, Tan TM, Chow VT, Poh CL (2005) RNA interference against enterovirus 71 infection. Virology 341:72–79CrossRefGoogle Scholar
  80. Solomon T, Lewthwaite P, Perera D, Cardosa MJ, McMinn P, Ooi MH (2010) Virology, epidemiology, pathogenesis, and control of enterovirus 71. Lancet Infect Dis 10:778–790CrossRefGoogle Scholar
  81. Tan S, Tan X, Sun X, Lu G, Chen CC, Yan J, Liu J, Xu W, Gao GF (2013) VP2 Dominated CD4 + T Cell Responses against Enterovirus 71 and Cross-Reactivity against Coxsackievirus A16 and Polioviruses in a Healthy Population. J Immunol 191:1637–1647CrossRefGoogle Scholar
  82. Tan YW, Hong WJ, Chu JJ (2016) Inhibition of enterovirus VP4 myristoylation is a potential antiviral strategy for hand, foot and mouth disease. Antiviral Res 133:191–195CrossRefGoogle Scholar
  83. Tan CW, Sam IC, Lee VS, Wong HV, Chan YF (2017) VP1 residues around the five-fold axis of enterovirus A71 mediate heparan sulfate interaction. Virology 501:79–87CrossRefGoogle Scholar
  84. Tang WF, Yang SY, Wu BW, Jheng JR, Chen YL, Shih CH, Lin KH, Lai HC, Tang P, Horng JT (2007) Reticulon 3 binds the 2C protein of enterovirus 71 and is required for viral replication. J Biol Chem 282:5888–5898CrossRefGoogle Scholar
  85. Tang ZF, Xia HJ, Wang PP, Yang J, Zhao TY, Zhang Q, Hu YY, Zhou X (2014) The identification and characterization of nucleicacid chaperone activity of human enterovirus 71 nonstructural protein 3AB. Virology 464–465:353–364CrossRefGoogle Scholar
  86. Teoh HL, Mohammad SS, Britton PN, Kandula T, Lorentzos MS, Booy R, Jones A, Rawlinson W, Ramachandran V, Rodriguez ML, Andrews PI, Dale RC, Farrar MA, Sampaio H (2016) Clinical Characteristics and Functional Motor Outcomes of Enterovirus 71 Neurological Diseasein Children. JAMA Neurol 73:300–307CrossRefGoogle Scholar
  87. Todd S, Towner JS, Brown DM, Semler BL (1997) Replicationcompetent picornaviruses with complete genomic RNA 3′noncoding region deletions. J Virol 71:8868–8874Google Scholar
  88. Tseligka ED, Sobo K, Stoppini L, Cagno V, Abdul F, Piuz I, Meylan P, Huang S, Constant S, Tapparel C (2018) A VP1 mutation acquired during an enterovirus 71 disseminated infection confers heparan sulfatebinding ability and modulates ex vivo tropism. PLoS Pathog 14:e1007190CrossRefGoogle Scholar
  89. Ventoso I, Carrasco L (2003) A poliovirus 2A(pro) mutant unable to cleave 3CD shows inefficient viral protein synthesis and transactivation defects. J Virol 69:6280–6288Google Scholar
  90. Victorio CB, Xu Y, Ng Q, Meng T, Chow VT, Chua KB (2016) Cooperative effect of the VP1 amino acids 98E, 145A and 169F in the productive infection of mouse cell lines by enterovirus 71 (BS strain). Emerging Microbes and Infections 5:e60CrossRefGoogle Scholar
  91. Wang JR, Kung YH, Huang SW, Kiang D, Ho MS, Liu CC, Yu CK, Su IJ, Wang JR (2010) Introduction of a strong temperature-sensitive phenotype into enterovirus 71 by altering an amino acid of virus 3D polymerase. Virology 396:1–9CrossRefGoogle Scholar
  92. Wang J, Wu Z, Jin Q (2012a) COPI Is Required for Enterovirus 71 Replication. PLoS ONE 7:e38035CrossRefGoogle Scholar
  93. Wang XM, Zhu CF, Bao WG, Zhao K, Niu JQ, Yu XF, Zhang WY (2012b) Characterization of full-length enterovirus 71 strains from severe and mild disease patients in northeastern China. PLoS ONE 7:e32405CrossRefGoogle Scholar
  94. Wang B, Xi XY, Lei XB, Zhang XY, Cui S, Wang JW, Jin Q, Zhao ZD (2013) Enterovirus 71 Protease 2Apro Targets MAVS to Inhibit Anti-Viral Type I Interferon Responses. PLoS Pathog 9:e1003231CrossRefGoogle Scholar
  95. Wang HB, Lei XB, Xiao X, Yang CF, Lu WL, Huang Z, Leng QB, Jin Q, He B, Meng GX, Wang JW (2015a) Reciprocal regulation between enterovirus 71 and the NLRP3 inflammasome. Cell Rep 12:42–48CrossRefGoogle Scholar
  96. Wang LC, Chen SO, Chang SP, Lee YP, Yu CK, Chen CL, Tseng PC, Hsieh CY, Chen SH, Lin CF (2015b) Enterovirus 71 Proteins 2A and 3D Antagonize the Antiviral Activity of IFN-γ via Signaling Attenuation. J Virol 89:7028–7037CrossRefGoogle Scholar
  97. Wang XH, Wang HR, Li YX, Jin Y, Chu Y, Su AR, Wu ZW (2015c) TIA-1 and TIAR interact with 5′UTR of enterovirus 71 genome and facilitate viral replication. Biochem Biophys Res Commun 466:254–259CrossRefGoogle Scholar
  98. Wang HR, Chang L, Wang XH, Su AR, Feng CH, Fu YX, Chen DY, Zheng N, Wu ZW (2016) MOV10 interacts with Enterovirus 71 genomic 5′UTR and modulates viral replication. Biochem Biophys Res Commun 479:571–577CrossRefGoogle Scholar
  99. Wang HQ, Li K, Ma LL, Wu S, Hu J, Jiang JD, Li YH (2017a) Berberine inhibits enterovirus 71 replication by downregulating the MEK/ERK signaling pathway and autophagy. Virol J 14:2CrossRefGoogle Scholar
  100. Wang T, Wang B, Huang H, Zhang CY, Zhu YM, Pei B, Cheng CF, Sun L, Wang JW, Jin Q, Zhao ZD (2017b) Enterovirus 71 protease 2Apro and 3Cpro differentially inhibit the cellular endoplasmic reticulum-associated degradation (ERAD) pathway via distinct mechanisms, and enterovirus 71 hijacks ERAD component p97 to promote its replication. PLoS Pathog 13:e1006674CrossRefGoogle Scholar
  101. Wang WB, Xiao F, Wan P, Pan P, Zhang YC, Liu F, Wu KL, Liu YL, Wu JG (2017c) EV71 3D protein binds with NLRP3 and enhances the assembly of inflammasome complex. PLoS Pathog 13:e1006123CrossRefGoogle Scholar
  102. Wen BP, Dai HJ, Yang YH, Zhuang Y, Sheng R (2013) MicroRNA-23b inhibits enterovirus 71 replication through downregulation of EV71 VPl protein. Intervirology 56:195–200CrossRefGoogle Scholar
  103. Weng TY, Chen LC, Shyu HW, Chen SH, Wang JR, Yu CK, Lei HY, Yeh TM (2005) Lactoferrin inhibits enterovirus 71 infection by binding to VP1 protein and host cells. Antivir Res 67:31–37CrossRefGoogle Scholar
  104. Weng KF, Li ML, Hung CT, Shih SR (2009) Enterovirus 71 3C protease cleaves a novel target CstF-64 and inhibits cellular polyadenylation. PLoS Pathog 5:e1000593CrossRefGoogle Scholar
  105. Weng KF, Chen LL, Huang PN, Shih SR (2010) Neural pathogenesis of enterovirus 71 infection. Microbes and infection/Institut Pasteur 12:505–510CrossRefGoogle Scholar
  106. World Health Organization. Regional Office for the Western Pacific (2018) Hand, foot and mouth disease situation update 2018.
  107. Wu KX, Ng MM, Chu JJ (2010a) Developments towards antiviral therapies against enterovirus 71. Drug Discov Today 15:1041–1051CrossRefGoogle Scholar
  108. Wu Y, Lou ZY, Miao Y, Yu Y, Dong H, Peng W, Bartlam M, Li XM, Rao ZH (2010b) Structures of EV71 RNA dependent RNA polymerase in complex with substrate and analogue provide a drug target against the hand-foot-andmouth disease pandemic in China. Protein Cell 1:491–500CrossRefGoogle Scholar
  109. Xia HJ, Wang PP, Wang GC, Yang J, Sun XL, Wu WZ, Qiu Y, Shu T, Zhao XL, Yin L, Qin CF, Hu YY, Zhou X (2015) Human Enterovirus Nonstructural Protein 2C ATPase Functions as Both an RNA Helicase and ATP-Independent RNA Chaperone. PLoS Pathog 11:e1005067CrossRefGoogle Scholar
  110. Xiao X, Lei XB, Zhang ZZ, Ma YJ, Qi JL, Wu C, Xiao Y, Li L, He B, Wang JW (2017) Enterovirus 3A facilitates viral replication by promoting PI4 KB-ACBD3 interaction. J Virol 91:e00791-17CrossRefGoogle Scholar
  111. Xie SQ, Wang K, Yu WJ, Lu W, Xu K, Wang JW, Ye B, Schwarz WG, Jin Q, Sun B (2011) DIDS blocks a chloride-dependent current that is mediated mediated by the 2B protein of enterovirus 71. Cell Res 21:1271–1275CrossRefGoogle Scholar
  112. Xu CZ, He X, Zheng ZR, Zhang Z, Wei CW, Guan K, Hou LH, Zhang BC, Zhu L, Cao Y, Zhang YH, Cao Y, Ma SL, Wang PH, Zhang PP, Xu QB, Ling YG, Yang X, Zhong H (2014) Downregulation of microRNA miR-526a by enterovirus inhibits RIG-I-dependent innate immune response. J Virol 88:11356–11368CrossRefGoogle Scholar
  113. Xu LF, He DL, Yang LS, Li ZQ, Ye XZ, Yu H, Zhao H, Li SX, Yuan LZ, Qian HL, Que YQ, Shih JW, Zhu H, Li YM, Cheng T, Xia NS (2015) A Broadly Cross-protective Vaccine Presenting the Neighboring Epitopes within the VP1 GH Loopand VP2 EF Loop of Enterovirus 71. Sci Rep 5:12973CrossRefGoogle Scholar
  114. Yang CH, Li HC, Jiang JG, Hsu CF, Wang YJ, Lai MJ, Juang YL, Lo SY (2010) Enterovirus type 71 2A protease functions as a transcriptional activator in yeast. J Biomed Sci 4:17–65Google Scholar
  115. Yang SL, Chou YT, Wu CN, Ho MS (2011) Annexin II binds to capsid protein VP1 of enterovirus 71 and enhances viral infectivity. J Virol 85:11809–11820CrossRefGoogle Scholar
  116. Yang XD, Hu ZL, Fan SS, Zhang Q, Zhong Y, Guo D, Qin YL, Chen MZ (2018) Picornavirus 2A protease regulates stress granule formation to facilitate viral translation. PLoS Pathog 14:e1006901CrossRefGoogle Scholar
  117. Yeh MT, Wang SW, Yu CK, Lin KH, Lei HY, Su IJ, Wang JR (2011) A Single Nucleotide in Stem Loop II of 59-Untranslated Region Contributes to Virulence of Enterovirus 71 in Mice. PLoS ONE 6:e27082CrossRefGoogle Scholar
  118. Yi L, Lu J, Kung HF, He ML (2011) The virology and developments toward control of human enterovirus 71. Crit Rev Microbiol 37:313–327CrossRefGoogle Scholar
  119. Yuan SL, Li GM, Wang Y, Gao QQ, Wang YZ, Cui R, Altmeyer R, Zou G (2015) Identification of Positively Charged Residues in Enterovirus 71 Capsid Protein VP1 Essential for Production of Infectious Particles. J Virol 90:741–752CrossRefGoogle Scholar
  120. Zhang FH, Hao CS, Zhang S, Li AQ, Zhang QF, Wu W, Lin L, Li C, Liang MF, Li XL, Li DX (2014) Oral immunization with recombinant enterovirus 71 VP1 formulated with chitosan protects mice against lethal challenge. Virol J 11:80CrossRefGoogle Scholar
  121. Zheng ZH, Li HX, Zhang ZF, Meng J, Mao D, Bai BK, Lu BJ, Mao PY, Hu QX, Wang HZ (2011) Enterovirus 71 2C protein inhibits TNF-α–mediated activation of NF-kB by suppressing Ikβ kinase β phosphorylation. J Immunol 187:2202–2212CrossRefGoogle Scholar

Copyright information

© Wuhan Institute of Virology, CAS 2018

Authors and Affiliations

  1. 1.Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
  2. 2.NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina

Personalised recommendations