Virologica Sinica

, Volume 32, Issue 5, pp 369–375 | Cite as

Lipids, lipid metabolism and Kaposi’s sarcoma-associated herpesvirus pathogenesis

  • Lu DaiEmail author
  • Zhen Lin
  • Wei Jiang
  • Erik K. Flemington
  • Zhiqiang QinEmail author


Lipids are essential for mammalian cells to maintain many physiological functions. Emerging evidence has shown that cancer cells can develop specific alterations in lipid biosynthesis and metabolism to facilitate their survival and various malignant behaviors. To date, the precise role of cellular lipids and lipid metabolism in viral oncogenesis is still largely unclear with only a handful of literature covering this topic to implicate lipid metabolism in oncogenic virus associated pathogenesis. In this review, we focus on the role of lipid biosynthesis and metabolism in the pathogenesis of the Kaposi’s sarcoma-associated herpesvirus, a common causative factor for cancers arising in the immunocompromised settings.


Kaposi’s sarcoma-associated herpesvirus (KSHV) herpesvirus lipid metabolism 



This work was partially supported by grants from a DOD Career Development Award (CA140437), the Louisiana Clinical and Translational Science Center Pilot grants (U54GM104940 from NIH), a LSU LIFT2 funding, a NIH P20-GM121288-01 subproject, NIH RO1s (AI091526, AI128864, AI101046, and AI106676) as well as awards from the National Natural Science Foundation of China (81472547, 81400164, 81672924 and 81772930). Funding sources had no role in the study design, data collection/ analysis, decision to publish, and/or manuscript preparation.

Compliance with Ethics Guidelines

The authors declare that they have no conflicts of interest. This article does not contain any studies with human or animal subjects performed by any of the authors.


  1. Akula SM, Pramod NP, Wang FZ, Chandran B. 2002. Integrin alpha3beta1 (CD 49c/29) is a cellular receptor for Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV-8) entry into the target cells. Cell, 108: 407–419.PubMedGoogle Scholar
  2. Aluigi MG, Albini A, Carlone S, Repetto L, De Marchi R, Icardi A, Moro M, Noonan D, Benelli R. 1996. KSHV sequences in biopsies and cultured spindle cells of epidemic, iatrogenic and Mediterranean forms of Kaposi’s sarcoma. Res Virol, 147: 267–275.PubMedGoogle Scholar
  3. Angius F, Uda S, Piras E, Spolitu S, Ingianni A, Batetta B, Pompei R. 2015. Neutral lipid alterations in human herpesvirus 8-infected HUVEC cells and their possible involvement in neo-angiogenesis. BMC Microbiol, 15: 74.PubMedPubMedCentralGoogle Scholar
  4. Avey D, Brewers B, Zhu F. 2015. Recent advances in the study of Kaposi’s sarcoma-associated herpesvirus replication and pathogenesis. Virol Sin, 30: 130–145.PubMedGoogle Scholar
  5. Ballestas ME, Chatis PA, Kaye KM. 1999. Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science, 284: 641–644.PubMedGoogle Scholar
  6. Bhatt AP, Jacobs SR, Freemerman AJ, Makowski L, Rathmell JC, Dittmer DP, Damania B. 2012. Dysregulation of fatty acid synthesis and glycolysis in non-Hodgkin lymphoma. Proc Natl Acad Sci U S A, 109: 11818–11823.PubMedPubMedCentralGoogle Scholar
  7. Birkmann A, Mahr K, Ensser A, Yaguboglu S, Titgemeyer F, Fleckenstein B, Neipel F. 2001. Cell surface heparan sulfate is a receptor for human herpesvirus 8 and interacts with envelope glycoprotein K8. 1. J Virol, 75: 11583–11593.PubMedGoogle Scholar
  8. Bonnet F, Lewden C, May T, Heripret L, Jougla E, Bevilacqua S, Costagliola D, Salmon D, Chene G, Morlat P. 2004. Malignancy-related causes of death in human immunodeficiency virus-infected patients in the era of highly active antiretroviral therapy. Cancer, 101: 317–324.PubMedGoogle Scholar
  9. Cao Y, Qiao J, Lin Z, Zabaleta J, Dai L, Qin Z. 2017. Up-regulation of tumor suppressor genes by exogenous dhC16-Cer contributes to its anti-cancer activity in primary effusion lymphoma. Oncotarget, 8: 15220–15229.PubMedPubMedCentralGoogle Scholar
  10. Cesarman E, Chang Y, Moore PS, Said JW, Knowles DM. 1995. Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N Engl J Med, 332: 1186–1191.PubMedGoogle Scholar
  11. Chakraborty S, ValiyaVeettil M, Sadagopan S, Paudel N, Chandran B. 2011. c-Cbl-mediated selective virus-receptor translocations into lipid rafts regulate productive Kaposi’s sarcoma-associated herpesvirus infection in endothelial cells. J Virol, 85: 12410–12430.PubMedPubMedCentralGoogle Scholar
  12. Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM, Moore PS. 1994. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science, 266: 1865–1869.PubMedGoogle Scholar
  13. Chen YB, Rahemtullah A, Hochberg E. 2007. Primary effusion lymphoma. Oncologist, 12: 569–576.PubMedGoogle Scholar
  14. Cuvillier O, Pirianov G, Kleuser B, Vanek PG, Coso OA, Gutkind S, Spiegel S. 1996. Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature, 381: 800–803.PubMedGoogle Scholar
  15. Dai L, Plaisance-Bonstaff K, Voelkel-Johnson C, Smith CD, Ogretmen B, Qin Z, Parsons C. 2014. Sphingosine kinase-2 maintains viral latency and survival for KSHV-infected endothelial cells. PLoS One, 9: e102314.PubMedPubMedCentralGoogle Scholar
  16. Dai L, Qin Z, Defee M, Toole BP, Kirkwood KL, Parsons C. 2012. Kaposi sarcoma-associated herpesvirus (KSHV) induces a functional tumor-associated phenotype for oral fibroblasts. Cancer Lett, 318: 214–220.PubMedGoogle Scholar
  17. Dai L, Trillo-Tinoco J, Bai A, Chen Y, Bielawski J, Del Valle L, Smith CD, Ochoa AC, Qin Z, Parsons C. 2015. Ceramides promote apoptosis for virus-infected lymphoma cells through induction of ceramide synthases and viral lytic gene expression. Oncotarget, 6: 24246–24260.PubMedPubMedCentralGoogle Scholar
  18. Delgado T, Sanchez EL, Camarda R, Lagunoff M. 2012. Global metabolic profiling of infection by an oncogenic virus: KSHV induces and requires lipogenesis for survival of latent infection. PLoS Pathog, 8: e1002866.PubMedPubMedCentralGoogle Scholar
  19. Dupin N, Fisher C, Kellam P, Ariad S, Tulliez M, Franck N, van Marck E, Salmon D, Gorin I, Escande JP, Weiss RA, Alitalo K, Boshoff C. 1999. Distribution of human herpesvirus-8 latently infected cells in Kaposi’s sarcoma, multicentric Castleman’s disease, and primary effusion lymphoma. Proc Natl Acad Sci U S A, 96: 4546–4551.PubMedPubMedCentralGoogle Scholar
  20. Flaitz CM, Jin YT, Hicks MJ, Nichols CM, Wang YW, Su IJ. 1997. Kaposi’s sarcoma-associated herpesvirus-like DNA sequences (KSHV/HHV-8) in oral AIDS-Kaposi’s sarcoma: a PCR and clinicopathologic study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 83: 259–264.PubMedGoogle Scholar
  21. Fontana JM, Mygatt JG, Conant KL, Parsons CH, Kaleeba JA. 2014. Kaposi’s Sarcoma-Associated Herpesvirus Subversion of the Anti-Inflammatory Response in Human Skin Cells Reveals Correlates of Latency and Disease Pathogenesis. J Skin Cancer, 2014: 246076.PubMedPubMedCentralGoogle Scholar
  22. Garrigues HJ, Rubinchikova YE, Dipersio CM, Rose TM. 2008. Integrin alphaVbeta3 Binds to the RGD motif of glycoprotein B of Kaposi’s sarcoma-associated herpesvirus and functions as an RGD-dependent entry receptor. J Virol, 82: 1570–1580.PubMedGoogle Scholar
  23. Gonzalez-Pardo V, D’Elia N, Verstuyf A, Boland R, Russo de Boland A. 2012. NFkappaB pathway is down-regulated by 1alpha, 25(OH)(2)-vitamin D(3) in endothelial cells transformed by Kaposi sarcoma-associated herpes virus G protein coupled receptor. Steroids, 77: 1025–1032.PubMedGoogle Scholar
  24. Gonzalez-Pardo V, Martin D, Gutkind JS, Verstuyf A, Bouillon R, de Boland AR, Boland RL. 2010. 1 Alpha, 25-dihydroxyvitamin D3 and its TX527 analog inhibit the growth of endothelial cells transformed by Kaposi sarcoma-associated herpes virus G protein-coupled receptor in vitro and in vivo. Endocrinology, 151: 23–31.PubMedGoogle Scholar
  25. Gonzalez-Pardo V, Verstuyf A, Boland R, Russo de Boland A. 2013. Vitamin D analogue TX 527 down-regulates the NFkappaB pathway and controls the proliferation of endothelial cells transformed by Kaposi sarcoma herpesvirus. Br J Pharmacol, 169: 1635–1645.PubMedPubMedCentralGoogle Scholar
  26. Gorres KL, Daigle D, Mohanram S, Miller G. 2014. Activation and repression of Epstein-Barr Virus and Kaposi’s sarcoma-associated herpesvirus lytic cycles by short-and medium-chain fatty acids. J Virol, 88: 8028–8044.PubMedPubMedCentralGoogle Scholar
  27. Grisotto MG, Garin A, Martin AP, Jensen KK, Chan P, Sealfon SC, Lira SA. 2006. The human herpesvirus 8 chemokine receptor vGPCR triggers autonomous proliferation of endothelial cells. J Clin Invest, 116: 1264–1273.PubMedPubMedCentralGoogle Scholar
  28. Grundhoff A, Ganem D. 2004. Inefficient establishment of KSHV latency suggests an additional role for continued lytic replication in Kaposi sarcoma pathogenesis. J Clin Invest, 113: 124–136.PubMedPubMedCentralGoogle Scholar
  29. Hahn AS, Kaufmann JK, Wies E, Naschberger E, Panteleev-Ivlev J, Schmidt K, Holzer A, Schmidt M, Chen J, Konig S, Ensser A, Myoung J, Brockmeyer NH, Sturzl M, Fleckenstein B, Neipel F. 2012. The ephrin receptor tyrosine kinase A2 is a cellular receptor for Kaposi’s sarcoma-associated herpesvirus. Nat Med, 18: 961–966.PubMedPubMedCentralGoogle Scholar
  30. Janes PW, Ley SC, Magee AI, Kabouridis PS. 2000. The role of lipid rafts in T cell antigen receptor (TCR) signalling. Semin Immunol, 12: 23–34.PubMedGoogle Scholar
  31. Kaleeba JA, Berger EA. 2006. Kaposi’s sarcoma-associated herpesvirus fusion-entry receptor: cystine transporter xCT. Science, 311: 1921–1924.PubMedGoogle Scholar
  32. Kang S, Myoung J. 2017. Primary lymphocyte infection models for KSHV and its putative tumorigenesis mechanisms in B cell lymphomas. J Microbiol, 55: 319–329.PubMedGoogle Scholar
  33. Kuhajda FP, Pizer ES, Li JN, Mani NS, Frehywot GL, Townsend CA. 2000. Synthesis and antitumor activity of an inhibitor of fatty acid synthase. Proc Natl Acad Sci U S A, 97: 3450–3454.PubMedPubMedCentralGoogle Scholar
  34. Lager I, Altini M, Coleman H, Ali H. 2003. Oral Kaposi’s sarcoma: a clinicopathologic study from South Africa. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 96: 701–710.PubMedGoogle Scholar
  35. Lebbe C, de Cremoux P, Millot G, Podgorniak MP, Verola O, Berger R, Morel P, Calvo F. 1997. Characterization of in vitro culture of HIV-negative Kaposi’s sarcoma-derived cells. In vitro responses to alfa interferon. Arch Dermatol Res, 289: 421–428.PubMedGoogle Scholar
  36. Maceyka M, Payne SG, Milstien S, Spiegel S. 2002. Sphingosine kinase, sphingosine-1-phosphate, and apoptosis. Biochim Biophys Acta, 1585: 193–201.PubMedGoogle Scholar
  37. Mesri EA, Cesarman E, Boshoff C. 2010. Kaposi’s sarcoma and its associated herpesvirus. Nat Rev Cancer, 10: 707–719.PubMedPubMedCentralGoogle Scholar
  38. Montaner S, Sodhi A, Molinolo A, Bugge TH, Sawai ET, He Y, Li Y, Ray PE, Gutkind JS. 2003. Endothelial infection with KSHV genes in vivo reveals that vGPCR initiates Kaposi’s sarcomagenesis and can promote the tumorigenic potential of viral latent genes. Cancer Cell, 3: 23–36.PubMedGoogle Scholar
  39. Naranatt PP, Akula SM, Zien CA, Krishnan HH, Chandran B. 2003. Kaposi’s sarcoma-associated herpesvirus induces the phosphatidylinositol 3-kinase-PKC-zeta-MEK-ERK signaling pathway in target cells early during infection: implications for infectivity. J Virol, 77: 1524–1539.PubMedPubMedCentralGoogle Scholar
  40. Ogretmen B, Hannun YA. 2004. Biologically active sphingolipids in cancer pathogenesis and treatment. Nat Rev Cancer, 4: 604–616.PubMedGoogle Scholar
  41. Porter JA, Young KE, Beachy PA. 1996. Cholesterol modification of hedgehog signaling proteins in animal development. Science, 274: 255–259.PubMedGoogle Scholar
  42. Qin Z, Dai L, Trillo-Tinoco J, Senkal C, Wang W, Reske T, Bonstaff K, Del Valle L, Rodriguez P, Flemington E, Voelkel-Johnson C, Smith CD, Ogretmen B, Parsons C. 2014. Targeting sphingosine kinase induces apoptosis and tumor regression for KSHV-associated primary effusion lymphoma. Mol Cancer Ther, 13: 154–164.PubMedGoogle Scholar
  43. Raghu H, Sharma-Walia N, Veettil MV, Sadagopan S, Caballero A, Sivakumar R, Varga L, Bottero V, Chandran B. 2007. Lipid rafts of primary endothelial cells are essential for Kaposi’s sarcoma-associated herpesvirus/human herpesvirus 8-induced phosphatidylinositol 3-kinase and RhoA-GTPases critical for microtubule dynamics and nuclear delivery of viral DNA but dispensable for binding and entry. J Virol, 81: 7941–7959.PubMedPubMedCentralGoogle Scholar
  44. Rappocciolo G, Jenkins FJ, Hensler HR, Piazza P, Jais M, Borowski L, Watkins SC, Rinaldo CR, Jr. 2006. DC-SIGN is a receptor for human herpesvirus 8 on dendritic cells and macrophages. J Immunol, 176: 1741–1749.PubMedGoogle Scholar
  45. Reichart PA. 2003. Oral manifestations in HIV infection: fungal and bacterial infections, Kaposi’s sarcoma. Med Microbiol Immunol, 192: 165–169.PubMedGoogle Scholar
  46. Roy S, Luetterforst R, Harding A, Apolloni A, Etheridge M, Stang E, Rolls B, Hancock JF, Parton RG. 1999. Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains. Nat Cell Biol, 1: 98–105.PubMedGoogle Scholar
  47. Saddoughi SA, Ogretmen B. 2013. Diverse functions of ceramide in cancer cell death and proliferation. Adv Cancer Res, 117: 37–58.PubMedGoogle Scholar
  48. Schulz TF. 2006. The pleiotropic effects of Kaposi’s sarcoma herpesvirus. J Pathol, 208: 187–198.PubMedGoogle Scholar
  49. Sharma-Walia N, Chandran K, Patel K, Veettil MV, Marginean A. 2014. The Kaposi’s sarcoma-associated herpesvirus (KSHV)-induced 5-lipoxygenase-leukotriene B4 cascade plays key roles in KSHV latency, monocyte recruitment, and lipogenesis. J Virol, 88: 2131–2156.PubMedPubMedCentralGoogle Scholar
  50. Sharma-Walia N, Krishnan HH, Naranatt PP, Zeng L, Smith MS, Chandran B. 2005. ERK1/2 and MEK1/2 induced by Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) early during infection of target cells are essential for expression of viral genes and for establishment of infection. J Virol, 79: 10308–10329.PubMedPubMedCentralGoogle Scholar
  51. Sharma-Walia N, Naranatt PP, Krishnan HH, Zeng L, Chandran B. 2004. Kaposi’s sarcoma-associated herpesvirus/human herpesvirus 8 envelope glycoprotein gB induces the integrin-dependent focal adhesion kinase-Src-phosphatidylinositol 3-kinase-rho GTPase signal pathways and cytoskeletal rearrangements. J Virol, 78: 4207–4223.PubMedPubMedCentralGoogle Scholar
  52. Sheets ED, Holowka D, Baird B. 1999. Critical role for cholesterol in Lyn-mediated tyrosine phosphorylation of FcepsilonRI and their association with detergent-resistant membranes. J Cell Biol, 145: 877–887.PubMedPubMedCentralGoogle Scholar
  53. Soulier J, Grollet L, Oksenhendler E, Cacoub P, Cazals-Hatem D, Babinet P, d’Agay MF, Clauvel JP, Raphael M, Degos L, et al. 1995. Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman’s disease. Blood, 86: 1276–1280.PubMedGoogle Scholar
  54. Strub GM, Maceyka M, Hait NC, Milstien S, Spiegel S. 2010. Extracellular and intracellular actions of sphingosine-1-phosphate. Adv Exp Med Biol, 688: 141–155.PubMedPubMedCentralGoogle Scholar
  55. Suares A, Russo de Boland A, Verstuyf A, Boland R, Gonzalez-Pardo V. 2015. The proapoptotic protein Bim is up regulated by 1alpha, 25-dihydroxyvitamin D3 and its receptor agonist in endothelial cells and transformed by viral GPCR associated to Kaposi sarcoma. Steroids, 102: 85–91.PubMedGoogle Scholar
  56. Sun R, Lin SF, Gradoville L, Yuan Y, Zhu F, Miller G. 1998. A viral gene that activates lytic cycle expression of Kaposi’s sarcoma-associated herpesvirus. Proc Natl Acad Sci U S A, 95: 10866–10871.PubMedPubMedCentralGoogle Scholar
  57. Sychev ZE, Hu A, DiMaio TA, Gitter A, Camp ND, Noble WS, Wolf-Yadlin A, Lagunoff M. 2017. Integrated systems biology analysis of KSHV latent infection reveals viral induction and reliance on peroxisome mediated lipid metabolism. PLoS Pathog, 13: e1006256.PubMedPubMedCentralGoogle Scholar
  58. Tansey MG, Baloh RH, Milbrandt J, Johnson EM, Jr. 2000. GFRalpha-mediated localization of RET to lipid rafts is required for effective downstream signaling, differentiation, and neuronal survival. Neuron, 25: 611–623.PubMedGoogle Scholar
  59. Wang C, Xu C, Sun M, Luo D, Liao DF, Cao D. 2009. Acetyl-CoA carboxylase-alpha inhibitor TOFA induces human cancer cell apoptosis. Biochem Biophys Res Commun, 385: 302–306.PubMedPubMedCentralGoogle Scholar
  60. Wang HW, Pittaluga S, Jaffe ES. 2016. Multicentric Castleman disease: Where are we now?. Semin Diagn Pathol, 33: 294–306.PubMedPubMedCentralGoogle Scholar
  61. Wei F, Zhu Q, Ding L, Liang Q, Cai Q. 2016. Manipulation of the host cell membrane by human γ-herpesviruses EBV and KSHV for pathogenesis. Virol Sin, 31: 395–405.PubMedGoogle Scholar
  62. Yu X, Shahir AM, Sha J, Feng Z, Eapen B, Nithianantham S, Das B, Karn J, Weinberg A, Bissada NF, Ye F. 2014. Short-Chain Fatty Acids from Periodontal Pathogens Suppress Histone Deacetylases, EZH2, and SUV39H1 To Promote Kaposi’s Sarcoma-Associated Herpesvirus Replication. J Virol, 88: 4466–4479.PubMedPubMedCentralGoogle Scholar

Copyright information

© Wuhan Institute of Virology, CAS and Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Genetics, Louisiana State University Health Sciences CenterLouisiana Cancer Research CenterNew OrleansUSA
  2. 2.Department of Pediatrics, East HospitalTongji University School of MedicineShanghaiChina
  3. 3.Research Center for Translational Medicine and Key Laboratory of Arrhythmias, East HospitalTongji University School of MedicineShanghaiChina
  4. 4.Department of Pathology, Tulane University Health Sciences CenterTulane Cancer CenterNew OrleansUSA
  5. 5.Department of Microbiology and Immunology, Division of Infectious Diseases, Department of MedicineMedical University of South CarolinaCharlestonUSA

Personalised recommendations